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SUMMARY

Embryonic stem cells (ESCs) possess a distinct chro-
matin conformation maintained by specialized chro-
matin proteins. To identify chromatin regulators in
ESCs, we developed a simple biochemical assay
namedD-CAP (differential chromatin-associatedpro-
teins), using brief micrococcal nuclease digestion of
chromatin, followed by liquid chromatography tan-
dem mass spectrometry (LC-MS/MS). Using D-CAP,
we identified several differentially chromatin-associ-
atedproteinsbetweenundifferentiatedanddifferenti-
ated ESCs, including the chromatin remodeling
protein SMARCD1. SMARCD1 depletion in ESCs led
to altered chromatin and enhanced endodermal dif-
ferentiation. Gene expression and chromatin immu-
noprecipitation sequencing (ChIP-seq) analyses
suggested that SMARCD1 is both an activator and
a repressor and is enriched at developmental regu-
lators and that its chromatin binding coincides
with H3K27me3. SMARCD1 knockdown caused
H3K27me3 redistribution and increased H3K4me3
around the transcription start site (TSS). One of the
identified SMARCD1 targets was Klf4. In SMARCD1-
knockdown clones, KLF4, as well as H3K4me3 at
the Klf4 locus, remained high and H3K27me3 was
abolished.These results proposea role forSMARCD1
in restricting pluripotency and activating lineage
pathways by regulating H3K27 methylation.
INTRODUCTION

Embryonic stem cells (ESCs) possess the remarkable ability to

differentiate into any cell type of the three germ layers: endo-
Cell
derm, mesoderm, and ectoderm. This unique capacity is at least

partially achieved owing to the distinct chromatin state of ESCs,

described as more open (Gaspar-Maia et al., 2011), and their

characteristic transcriptional network governed by OCT4,

SOX2, and NANOG (Boyer et al., 2005; Chen et al., 2008; Skott-

man et al., 2005). Chromatin structure and function are main-

tained by histone modifications and chromatin remodeling

proteins. Developmental genes in ESCs are bivalently marked

by the ‘‘active’’ histone 3-lysine 4 trimethylation (H3K4me3)

and the ‘‘repressive’’ H3K27me3. This allows developmental

genes rapid activation or repression upon differentiation (Bern-

stein et al., 2006; Mikkelsen et al., 2007; Pan et al., 2007; Zhao

et al., 2007).

Accumulating data suggest important roles for chromatin re-

modeling proteins in maintaining the characteristic chromatin

state in ESCs (Gaspar-Maia et al., 2009; Lessard and Crabtree,

2010; Serrano et al., 2013). There are four different families of

chromatin remodelers, each having a role in ESC biology: SWI/

SNF (switch/sucrose non-fermentable), CHD (chromodomain

helicase DNA binding), ISWI (imitation switch), and INO80

(inositol requiring 80 (Gaspar-Maia et al., 2011). The SWI/SNF

family of chromatin remodelers has a special subunit composi-

tion in ESCs termed esBAF (BRG-associated factor) (Ho et al.,

2009b). It was shown that several subunits of the esBAF complex

(e.g., BRG1 and SMARCC1) are downregulated during differen-

tiation (Efroni et al., 2008; Ho et al., 2009b), forming different

complexes in differentiated cells (Ho et al., 2009b). BRG1

(a.k.a. SMARCA4), the catalytic subunit of esBAF, is essential

for ESCs. BRG1 knockdown led to irregular ESC morphology,

reduced proliferation rate, and decreased differentiation capac-

ity (Efroni et al., 2008; Fazzio et al., 2008; Ho et al., 2009b; Kidder

et al., 2009). Brg1 was found to support pluripotency by two

opposing mechanisms: on one hand, enabling leukemia inhibi-

tory factor (LIF) signaling by counteracting Polycomb group

(PcG) proteins, and on the other hand, facilitating PcG function

at its targets (Ho et al., 2011). In addition to Brg1, several other

chromatin remodeling proteins were shown to regulate the
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stem cell state (Gaspar-Maia et al., 2011; Lessard and Crabtree,

2010), suggesting a central role for chromatin remodelers in plu-

ripotency maintenance and differentiation. Despite these recent

advances, the molecular mechanisms and players that link chro-

matin, transcription, differentiation capacity, and pluripotency of

stem cells have only been partially elucidated.

Here, we developed an unbiased approach for identifying

chromatin-associated proteins that are specifically enriched on

chromatin of pluripotent or differentiating ESCs but that can be

applied to compare any two cell types, developmental stages,

or various treatments. Unlike candidate-driven proteomics-

based screens such as co-immunoprecipitation (co-IP), we

analyzed all the released proteins in both cell states following

micrococcal nuclease (MNase) digestion of chromatin, enabling

us to identify cell-state-specific chromatin binding proteins

by mass spectrometry. Using this approach, we identified

SMARCD1 (a.k.a. BAF60a) as preferentially bound to chromatin

in ESCs. SMARCD1 is a member of the SWI/SNF family and acts

in recruiting transcription factors (TFs), such as Tbx1 and p53

(Chen et al., 2012; Oh et al., 2008), and nuclear receptors,

such as the glucocorticoid receptor (Hsiao et al., 2003), to the

SWI/SNF chromatin remodeling complex. The involvement of

SMARCD1 in ESC biology was recently suggested by several

studies. First, esBAF is enriched for SMARCD1 (Boyer et al.,

2005; Ho et al., 2009b); second, genome-wide promoter analysis

of DNA methylation in mouse ESCs and primary mouse embry-

onic fibroblasts (MEFs) showed that the Smarcd1 promoter is

hypomethylated in ESCs and hypermethylated in differentiated

cells (Farthing et al., 2008); and third, a direct interaction be-

tween SMARCD1and SOX2 was identified in a recent proteomic

study in ESCs (Gao et al., 2012).

In this work, we demonstrate the strength of our unbiased pro-

teomic approach and specifically suggest a role for SMARCD1 in

ESC biology. We show that SMARCD1-knockdown (SMARCD1-

KD) ESCs exhibit altered chromatin and a perturbed differentia-

tion phenotype. Gene expression analysis suggested that

SMARCD1 acts as both an activator and a repressor. Chromatin

immunoprecipitation (ChIP) followed by high-throughput

sequencing (ChIP-seq) demonstrated that SMARCD1 is en-

riched in developmental regulators, that its binding pattern

around transcription start sites (TSSs) is similar to that of

H3K27me3, and that SMARCD1 depletion severely affects the

global levels and distribution of H3K27me3. Taken together,

these results suggest that SMARCD1 acts to restrict pluripo-

tency and activate lineage programs during early commitment

by regulating H3K27 methylation to facilitate differentiation.

RESULTS

Differential Association of Chromatin Proteins
with Chromatin between Undifferentiated and
Differentiated ESCs
In order to identify chromatin-associated proteins that are differ-

entially associated with chromatin between different stages of

differentiation, we developed an assay we named D-CAP (differ-

ential chromatin-associated proteins). In this assay, we purified

nuclei from different stages of differentiation, thoroughly washed

out all proteins that are not tightly associated with chromatin
2020 Cell Reports 10, 2019–2031, March 31, 2015 ª2015 The Author
using consecutive low-salt buffer washes, and briefly treated

with increasing levels of MNase. The brief MNase digestion

releases chromatin-bound proteins, which are subsequently de-

tected by liquid chromatography tandem mass spectrometry

(LC-MS/MS) (Figure 1A). We performed D-CAP on purified nuclei

from ESCs and from ESCs differentiated for 7 days along the

neuronal lineage into neuronal progenitor cells (NPCs) (Efroni

et al., 2008) (Figure S1). As might be expected from the more

decondensed chromatin in undifferentiated ESCs, these cells

displayed a slight preferential chromatin protein release, as we

previously observed (Meshorer et al., 2006), but it should be

noted that differential dynamics is not a general property of all

chromatin proteins (Bo�skovi�c et al., 2014; Meshorer et al.,

2006) and thus reflects a unique biological feature of the differen-

tially associated proteins.

Comparing mass spectrometry results between ESCs and

NPCs identified chromatin-bound proteins characteristic of

each state. An average of �150 proteins were detected after

mild treatment with MNase (3 or 4.5 U/ml), 49 of which were

found exclusively in ESCs and 12 exclusively in NPCs (Table

S1). Among the ESC-exclusive proteins, we identified

SMARCC1 and SMARCD1 (a.k.a. BAF155 and BAF60a, respec-

tively), both of which are chromatin remodeling proteins of the

esBAF complex (Ho et al., 2009b).

To validate our analysis, we repeated the D-CAP assay and

quantified the levels of SMARCC1 and SMARCD1 using western

blots (WBs). Similar to the mass spectrometry results, we

found that both proteins were released more readily in the

undifferentiated state (Figure 1B). Additionally, to confirm this

independently, we performed salt-extraction experiments where

chromatin from ESCs and NPCs was subjected to increasing

NaCl concentrations, and once again, SMARCC1 and

SMARCD1 were released at lower salt concentrations in ESCs

than in NPCs (Figure 1C). These results confirm that SMARCC1

and SMARCD1 are differentially associated with chromatin be-

tween ESCs and NPCs, as revealed by our D-CAP assay. Differ-

ential release was not due to differences in protein abundance

between ESCs and NPCs, since the overall levels of both

SMARCC1 and SMARCD1 did not change significantly (Figures

1B and 1C, input lanes).

SMARCD1 Depletion Has a Limited Effect in
Undifferentiated ESCs
Several chromatin remodeling proteins have previously been

identified to have important roles in ESC biology, including

SMARCC1 (Ho et al., 2009b; Schaniel et al., 2009). We therefore

focused our attention on anothermember of the esBAF complex,

SMARCD1. To elucidate the role of SMARCD1 in ESCs, we

generated both SMARCD1-knockout (SMARCD1-KO) clones

using CRISPR/Cas9 (Figures S1D and S1E), as well as stable

ESC lines constitutively expressing small hairpin RNAs (shRNAs)

against SMARCD1 (Figures 2 and S2). SMARCD1 KO was toler-

ated in undifferentiated ESCs, but differentiation of these cells

resulted in extensive cell death preventing careful examination

of the SMARCD1-related phenotypes. We therefore concen-

trated on the SMARCD1-KD clones. SMARCD1 KD was verified

in two separate clones (1a and 1b) and was found to be sus-

tained at �75% and �50%, respectively, of SMARCD1 levels
s



Figure 1. D-CAP Identifies SMARCD1 and SMARCC1 as Differentially Associated with Chromatin in ESCs Compared with NPCs

(A) A schematic description of the differential chromatin-associated proteins (D-CAP) method. Purified nuclei from both ESCs and NPCs are purified and washed

four times with MNase digestion buffer. A brief MNase digestion is performed in order to release chromatin bound proteins. The released proteins can be

subjected to gel purification or mass spectrometry analysis. Further analysis of the identified proteins can be performed using tools such as STRING.

(B)Western blot (WB) validation of the chromatin-association patterns of SMARCC1 andSMARCD1 usingMNase. Input represents similar amounts of SMARCC1

(left) and SMARCD1 (right) in nuclei derived from ESCs and NPCs. ‘‘W/O MNase’’ represents the washed nuclear fraction incubated with the MNase buffer,

without the MNase enzyme. ‘‘MNase’’ represents a 4.5 U/ml MNase treatment. Lanes 2 and 3 were treated similarly for 10 min at 37�C. Quantification is shown

under each blot.

(C) Salt extraction of SMARCC1 and SMARCD1 using increasing amounts of NaCl. WB showing higher amounts of proteins released as a function of salt

concentration. The graphs show WB quantification normalized to input. Input represents similar amounts of SMARCC1 (left) and SMARCD1 (right) in nuclei

derived from ESCs and NPCs.

In (B) and (C), normalization of band intensity was done using ImageJ. Quantification is shown under each blot.
detected in a control line (S2) expressing scrambled oligo shRNA

(Figures 2A and 2B) or in wild-type (WT) cells (not shown).

SMARCD1-KD clones remained in their undifferentiated state;

they formed compact colonies (Figure 2A), expressed the

distinct ESC markers Oct4 and Nanog (Figures 2B and 2C),

and maintained self-renewal properties and unaffected prolifer-

ation rates (Figure S2A). Additionally, SMARCD1-KD ESCs

gave rise to teratomas showing indicative cell populations of all

three germ layers (Figure S2B).

Since SMARCD1 is a chromatin remodeler, we examined

whether KD of this protein affects chromatin protein dynamics

and chromatin features as we have previously shown for

the chromatin remodeling protein CHD1 (Gaspar-Maia et al.,

2009). Fluorescence recovery after photobleaching (FRAP) anal-

ysis showed a significant change in the bleach depth of H1e-GFP

upon knockdown (KD) of SMARCD1 (Figure S2C), indicating

that the H1-GFP fraction in the KD cells is more mobile. In

addition, using quantitative immunofluorescence, we tested

marks of open chromatin and found that the levels of histone

H3 acetylation (H3ac) were higher in the SMARCD1-KD clones

(Figures 2D and 2E), although the levels of H3K4me3 were

essentially unaltered between the SMARCD1-KD ESCs and the
Cell
control cells (Figure S2D). We also tested the levels of two hall-

marks of closed chromatin conformation including heterochro-

matin protein 1a (HP1a) and HP1g, both of which remained

unaltered in the undifferentiated state. HP1g levels were deter-

mined by quantitative immunofluorescence (Figure 2C), and

HP1a levels were quantified by western blots from chromatin

fractions (Figure 2F). Although the expression level of HP1a

did not change significantly in the undifferentiated state, its

nuclear distribution was significantly altered, with a reduced

number of heterochromatin foci per cell compared with controls

(Figure 2G; p < 0.05, two-tailed Student’s t test), opposite

to what we previously observed in ESCs deficient for Chd1

(Gaspar-Maia et al., 2009). In retinoic acid (RA)-treated cells,

HP1a was significantly reduced in the SMARCD1-KD clones

(Figure 2F). The reduction of HP1a was confirmed in both the

chromatin-bound and nucleoplasmic fractions to rule out

differential distribution or chromatin association of HP1a.

Taken together, these data demonstrate that while proliferation

rate and pluripotency markers are overall unaffected in

SMARCD1-KD cells, chromatin is globally more decondensed

with reduced heterochromatin foci and somewhat elevated

chromatin plasticity.
Reports 10, 2019–2031, March 31, 2015 ª2015 The Authors 2021



Figure 2. SMARCD1 Knockdown Affects

Chromatin in ESCs and RA-Differentiated

ESCs

(A) Immunostaining with anti-SMARCD1 anti-

bodies (red, top) in SMARCD1-KD clones (1a and

1b) and in control cells (S2). Lower panel: DAPI.

(B) WB of SMARCD1 and OCT4 in SMARCD1-KD

clones and controls (representative pictures from

two independent experiments are shown). OCT4

levels did not change significantly.

(C) ESC-KD clones and controls were co-immu-

nostained with anti-NANOG (green) and anti-HP1g

(red). Right panel: DAPI.

(D) ESC-KD clones and controls were co-immu-

nostained with anti-H3ac (green) and anti-HP1a

(red) showing high expression levels of H3ac and

reduced number of HP1a foci in SMARCD1-KD

cells.

(E) Quantification of H3ac fluorescence intensity.

Changes are significant (n = 110; p < 10�10, two-

tailed Student’s t test).

(F) WB showing HP1a levels in KD clones and

controls in ESCs and in RA-differentiated ESCs

(upper panel). Ponceau staining of core histones

was used as a loading control (lower panel).

(G) Quantification of the number of HP1-positive

heterochromatin foci in SMARCD1-KD versus

controls. The average number of foci per nucleus

was reduced from 5.6 in S2 to 4.9 in KD cells.

Changes are significant (n = 126; p < 0.05, two-

tailed Student’s t test).

Scale bars in (A), (C), and (D) represent 10 mm.
SMARCD1 Is Necessary for Proper ESC Differentiation
As mentioned earlier, SMARCD1 KD did not alter Oct4 levels

in undifferentiated ESCs and both SMARCD1-KO and

SMARCD1-KD clones remained as undifferentiated ESCs

when cultured on MEFs in the presence of LIF. To test the situa-

tion in differentiated cells, we subjected both cell types to

embryoid body (EB) formation and examined the levels of

OCT4 using WBs. We found that while in control cells OCT4 is

dramatically reduced, as expected, the SMARCD1-KD clones

failed to reduce OCT4 levels, which remained significantly higher

than in control cells (Figure 3A). These data imply that SMARCD1

might have a role in silencing the pluripotency network upon dif-

ferentiation. Supporting this notion, real-time quantitative RT-

PCR (qPCR) for different markers demonstrated perturbed

expression of an additional pluripotency factor, KLF4 (Figure 3B),

which is also expressed during early endodermal differentia-

tion (see below), as well as genes associated with ectoderm
2022 Cell Reports 10, 2019–2031, March 31, 2015 ª2015 The Authors
(Figure 3C), endoderm (Figure 3D) and

mesoderm (Figures 3E and S3A) in differ-

entiating SMARCD1-KD EBs.

We next tested the effects of

SMARCD1 reduction on differentiation

into specific lineages, including meso-

derm (cardiomyocytes) and ectoderm

(NPCs and RA-induced differentiation).

In the initial stages of mesodermal differ-

entiation, themorphology of EB formation
as well as re-plating, monolayer spreading, and cell proliferation

was seemingly unaffected, but at differentiation day 10, KD

clones showed a remarkable 10-fold reduction in the number

of beating foci compared to control cells (Figure 4A). Real-time

qPCR analysis for cardiomyocyte markers at differentiation day

12 showed a significant reduction (ranging from 3- to 33-fold)

in the expression levels of the three mesodermal markers tested,

including Alcam, Tnnt2, and Nppa (Figure 4B). The early stages

of ectodermal differentiation were also unaffected, with KD cells

properly forming EBs, although when these EBs were re-plated

in NPC-inducing medium, they gave rise to 4-fold fewer NPCs

compared to control cells (Figures 4C and 4D). In RA-induced

differentiating cells, which remain as a monolayer and do not

transition through an EB stage, SMARCD1 reduction notably

altered cell morphology, with shrunk cytoplasms compared

with control cells, and a 40% reduction in cell length (Figures

4E and 4F). In agreement, Nestin (a hallmark of neuronal lineage



Figure 3. SMARCD1 Knockdown Leads to

Improper Gene Expression in Embryoid

Bodies

(A) WB of SMARCD1 and OCT4 in embryoid

bodies from SMARCD1-KD clones and controls

(representative pictures from two independent

experiments are shown).

(B) qPCR analysis of pluripotency markers OCT4

and KLF4 in EBs from SMARCD1-KD clones and

controls. The graph represents average gene

expression levels from three independent biolog-

ical repeats ± SEM normalized to the expression

levels of LMNB2.

(C) Same as (B) for ectodermal markers NESTIN,

FABP7, and PAX6.

(D) Same as (B) for endodermal markers GATA4,

LAMC1, FOXA2, and SOX17.

(E) Same as (B) for mesodermal markers COL1a1,

EOMES, and NODAL.
specification) levels, determined by WBs (Figure 4G) and qPCR

(Figure 5H), were significantly reduced, and the number of

Nestin-positive cells, determined by immunofluorescence stain-

ing (Figure 4H), decreased by over 2-fold in both fluorescence

levels and the percentage of Nestin-positive cells (Figures 4I

and 4J). Cell re-organization upon RA-induced differentiation

was also affected by SMARCD1 KD. While control cells grew

as a uniform monolayer, SMARCD1-KD cells organized into

two distinct morphological populations that differed by the

expression of Nestin or GATA4 (Figure 4I) in one sub-population

and Lamininb1 or FOXA2 in the other (Figures S4A and S4B). RA-

induced, FOXA2-positive, SMARCD1-KD cells also showed

elevated levels of KLF4 (Figure S4B) and directed endodermal

differentiation (Christodoulou et al., 2011) resulted in enhanced

endodermal marker expression in the SMARCD1-KD clones

compared with WT (Figure S4C). We thus tested whether the

increased KLF4 levels in these cells may explain the perturbed

differentiation phenotypes by repeating these experiments un-

der low-KLF4 conditions using infection with KLF4-specific

shRNAs. When KLF4 was silenced in the differentiating

SMARCD1-KD cells, the exaggerated endodermal differentia-

tion phenotype was almost completely restored (Figure S4D),

suggesting that the failure to silence KLF4 in the SMARCD1-

KD cells is largely responsible for the perturbed differentiation

phenotype. LacZ-KD, used as control, did not rescue these

phenotypes (Figure S4D), and KD of KLF4 in control cells had

no effect (Figure S4D, bottom). Taken together, these results

demonstrate that SMARCD1 is essential for ESC differentiation

and that its reduction leads to enhanced endodermal differenti-

ation, mediated largely by the failure to repress KLF4, at the

expense of ectodermal and mesodermal differentiation.

Gene Expression Analyses Support Differentiation
Abnormalities
In order to understand global effects of SMARCD1 KD on gene

expression and the role of SMARCD1 in proper ESC differentia-

tion, we analyzed changes in gene expression in both undifferen-

tiated ESCs and in RA-treated ESCs (4 days) (Table S4). The

different SMARCD1-KD clones showed very good reproduc-

ibility andclustered together byPearson’s correlation (Figure 5A).
Cell
To validate the microarray results, we performed qPCR for a

variety of different genes in both ESCs and RA-induced differen-

tiated cells and found a very high correlation between the micro-

array and qPCR results (R2 = 0.844) (Figures 5B and 5E–5J).

Since the esBAF complex was shown to act as both an acti-

vator and a repressor (Ho et al., 2009a), we speculated that

SMARCD1 KDwould lead to both upregulation and downregula-

tion of genes. Indeed, 236 genes were upregulated and 511

genes were downregulated in SMARCD1-KD ESCs. This trend

was much more prominent in the RA-differentiated cells, with

1,088 upregulated and 1,240 downregulated genes (Figure 5C).

Gene Ontology (GO) analysis for genes downregulated in RA-

differentiating KD clones showed the most significant score

(p < 0.001) and included terms related to differentiation and

cellular regulation (Figure S5A), DNA binding (Figure S5B), and

extracellular matrix (ECM) (Figure S5C), compared with control

cells. A closer examination of the perturbed genes showed

downregulation of ectodermal (e.g., Nes, Sema3a, and Vim) (Fig-

ure S5D) and mesodermal (e.g., Col1a1, Col2a1, and Wt1) (Fig-

ure S5E) markers and upregulation of endodermal markers

(e.g., Gata4, Gata6, and Sox7) upon differentiation (Figure S5F).

Pluripotency markers were upregulated both before and after

differentiation (Figures 5D–5G). Overall, our gene expression

analyses support the cellular phenotype we observed in relation

to mesodermal and ectodermal differentiations and indicate that

SMARCD1 is important for ESC differentiation, either directly or

indirectly.

SMARCD1 Is Involved in Gene Regulation and
Ectodermal Differentiation
Since SMARCD1 KD significantly affected gene expression, the

next step in our inquiry was to identify its genomic targets. To

this end, we performed chromatin immunoprecipitation (ChIP)

followed by high-throughput sequencing (ChIP-seq) using

SMARCD1-specific antibodies in both undifferentiated and RA-

induced differentiated (4 days) ESCs. We found that SMARCD1

binding was significantly enriched in genic regions, where it pre-

dominantly bound exonic and intronic regions and, to a some-

what lesser extent, 30 UTRs and promoter regions (Figure 6A).

SMARCD1 was found to bind 2,112 genes in undifferentiated
Reports 10, 2019–2031, March 31, 2015 ª2015 The Authors 2023



Figure 4. Impaired Differentiation in SMARCD1-Knockdown Clones

(A) Quantification of the number of beating foci in the SMARCD1-KD clones (1a and 1b) and controls (S2) after 10 days of cardiomyocyte differentiation. Shown are

mean values of three independent experiments ± SEM. Changes are significant (p < 0.01; two-tailed Student’s t test).

(B) qPCR analysis of cardiomyocyte markers ALCAM, TNNT2, and NPPA in SMARCD1-KD clones and controls. The graph represents average gene expression

levels ±SEMnormalized to the expression levels of GAPDH from three independent experiments. Changes are significant (p < 0.0002, two-tailed Student’s t test).

(C) NPC formation in SMARCD1-KD clones (1a and 1b) and controls (S2). Scale bar, 200 mm.

(legend continued on next page)
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cells and 2,406 genes in differentiated cells (Table S5).

Comparing these two groups, we found that �30% of the genes

are bound by SMARCD1 both before and after 4 days of differen-

tiation (Figure 6B; p < 10�9, Fisher’s exact test). GO analysis

revealed that SMARCD1 binds genes that belong to two main

‘‘biological processes’’: ‘‘regulation’’ and ‘‘development.’’ Inter-

estingly, these two GO categories were dominant both before

and after differentiation (Figures S6A and S6B), despite the fact

that only �30% of the genes are shared. Further examination

of the three groups (genes specific to ESCs, shared genes,

and genes specific to RA) using GO analysis revealed that the

shared genes and genes specific to RA belong to the same bio-

logical processes: regulation and development. The main cate-

gory of the ESCs specific genes was ‘‘cell cycle.’’ Interestingly,

regulation and development were also found to be the main cat-

egories that characterize the genes with altered expression in

differentiating KD cells when compared with differentiated con-

trol cells (Figure S5A). Taken together, this strongly suggests a

direct role for SMARCD1 in the regulation of genes involved in

these two biological processes.

Peak distribution of SMARCD1 around the TSS (±5 kb)

showed that SMARCD1 binds the promoter region, is depleted

in the TSS, and binds again in the gene body with an even stron-

ger signal (Figure 6C). This pattern is common to both pluripotent

and RA-induced differentiating cells, although RA-treated cells

show a more pronounced enrichment in gene bodies (Figure 6C,

red). Interestingly, the distribution pattern of SMARCD1 around

the TSS resembles that of H3K27me3 (Figure 7E). To further

analyze the correlation between the binding pattern of

SMARCD1 at genes and its effect on gene expression, we

analyzed changes in gene expression in respect to SMARCD1

binding. We found that SMARCD1 was significantly enriched in

genes that were downregulated upon KD: 81 out of 511 and

196 out of 1,125 genes were bound by SMARCD1 in ESCs and

in RA-induced cells, respectively (p = 0.00015 in ESC and p <

10�9 in RA, Fisher’s exact test). In the upregulated genes

(upon SMARCD1 KD), significance levels were marginal, with

36 out of 236 genes in ESCs (p = 0.017, Fisher’s exact test)

and 149 out of 1,084 in RA-treated samples (p = 0.046, Fisher’s

exact test). These data suggest that SMARCD1 is required for

the induction of a core set of genes.

Because of the perturbed differentiation phenotype, we next

analyzed the binding pattern of SMARCD1 to well-established

42 genes related to development and differentiation of the three

germ layers (Table S2). While in endoderm and mesoderm no

significant enrichment or correlation was found, we detected a
(D) Quantification of the number of cells per 200 mm2 ± SEM. Changes are signifi

(E) Cell morphology in SMARCD1 clones (lower panel) compared with S2 contro

(F) Quantification of cell length ± SEM. Changes are significant (n = 100; p < 10�

(G) WB of SMARCD1-KD clones and controls shows reduction in SMARCD1 an

(representative pictures from two independent experiments are shown).

(H) Immunostaining of RA-induced SMARCD1-KD clones (1a and 1b) and S2 co

right, merge. Scale bar, 50 mm.

(I) Quantification of (H). Graph represents NESTIN fluorescence intensity in RA-in

(J) Quantification of (H) ± SEM. Graph represents the percentage of NESTIN po

(p < 0.05, two-tailed Student’s t test). In (I) and (J), 80–150 cells were counted in

(K) Co-immunostaining of RA-induced SMARCD1-KD clones (1a and 1b) and co

middle panel; right, merge. Scale bar, 125 mm.

Cell
significant enrichment of SMARCD1 binding in ectodermal

genes after RA differentiation (Table S2). 5 of the 15 genes that

were tested were bound by SMARCD1 (p = 0.02, Fisher’s exact

test), and remarkably, the expression level of all of these bound

genes was reduced when SMARCD1 was knocked down (Table

S2). Taken together, these results imply a direct positive regula-

tion of ectodermal genes by SMARCD1 during RA-induced

differentiation.

SMARCD1 Co-localizes with Pluripotency Master
Regulators and p53
Wenext wished to correlate the binding profile of SMARCD1with

pluripotency factors. To this end, we analyzed previously pub-

lished ChIP-seq datasets in correlation with our own. Since

SMARCD1 is part of the esBAF complex, we first checked

whether we could detect co-localization between SMARCD1

and BRG1, the catalytic subunit of the complex. As expected,

we found a highly significant co-localization of the two proteins

(p < 10�9, Fisher’s exact test). In addition, we found significant

co-localization of SMARCD1 with several pluripotency master

regulators including OCT4, NANOG, and SOX2, but not KLF4

(p < 10�9, p = 83 10�5, p = 0.0068, and p = 0.0745, respectively,

Fisher’s exact test). Finally, we tested the potential co-associa-

tion of SMARCD1 with proteins that were found to bind

SMARCD1. A literature search revealed that TP53 (p53) (Oh

et al., 2008) and SOX2 (Gao et al., 2012) associated directly

with SMARCD1. We found that SMARCD1 co-localizes signifi-

cantly with TP53 (p = 4 3 10�6, Fisher’s exact test), but only

with the activated, phosphorylated form of p53, p53S18. Signif-

icance levels were much more marginal for the unphosphory-

lated p53 (p = 0.0022, Fisher’s exact test), likely due to the fact

that the anti-p53 antibody recognizes both the unphosphory-

lated and the phosphorylated forms. Taken together, these

data imply a potential role for SMARCD1 in regulating the

expression of genes governed by pluripotency-related TFs and

suggest that SMARCD1 associates with the active, but not the

inactive, form of p53. The specific nature of this interaction re-

mains to be defined.

SMARCD1 Is Associated with Bivalent Genes
Since many of the genes that were affected by SMARCD1 KD

have a role in differentiation, and since SMARCD1 binding pat-

terns resembled H3K27me3 binding patterns, we hypothesized

that they might be marked with the ‘‘bivalent’’ histone modifica-

tions H3K4me3 and H3K27me3. Indeed, we detected a marked

enrichment for bivalent genes bound by SMARCD1, especially in
cant (p < 0.007, two-tailed Student’s t test).

ls (upper panel) (scale bar, 50 mm) following RA-induced differentiation.
10, two-tailed Student’s t test).

d NESTIN levels following SMARCD1 KD. GAPDH was used for normalization

ntrols with anti-NESTIN antibodies (red, left panel). DAPI (blue), middle panel;

duced SMARCD1-KD clones (1a and 1b) and S2 controls.

sitive cells in the RA-induced SMARCD1-KD clones (1a, 1b) versus controls

each experiment.

ntrols using anti-NESTIN (red) and anti-GATA4 (green) antibodies. DAPI (blue),

Reports 10, 2019–2031, March 31, 2015 ª2015 The Authors 2025



Figure 5. Aberrant Expression of Pluripotency and Lineage Markers in SMARCD1-KD Cells

(A) Expression analysis of SMARCD1-KD and control clones before and after RA differentiation. Pearson’s correlation was used to calculate similarity. Red

denotes p > 0.95; blue denotes p < 0.95. Numbers represent biological replicates.

(B) Microarray validation using real-time RT-PCR (qPCR). The expression level of seven genes in both ESC and RA groups was measured. GAPDH was used for

normalization. Microarray and qPCR data are highly correlated (R2 = 0.84).

(C) Quantification of up- and downregulated genes (>1.5-fold) in SMARCD1-KD and control clones in both ESC and RA-treated groups.

(D) Expression level (microarray) of pluripotency markers in ESC and RA-treated cells (shown are mean values ± SEM of two biological replicates).

(E–J) qPCR analysis of OCT4 (E), KLF4 (F), TBX3 (G), NESTIN (H), GATA4 (I), and LAMC1 (J) in ESC and RA-treated cells. Shown are mean values ± SEM of two

biological replicates.
genes that were downregulated in the SMARCD1-KD cells (122

out of 511 in ESCs and 273 out of 1125 in RA-treated cells; p <

10�9 in both groups, Fisher’s exact test). Genes that were

upregulated in the KD cells showed a more modest enrichment

(44 out of 236 in ESCs and 173 out of 1084 in RA-treated cells;

p = 0.017 and p = 0.011, respectively, Fisher’s exact test). These

results called for studying the genome-wide patterns of

H3K4me3 and H3K27me3 in SMARCD1-KD clones.

SMARCD1 Regulates H3K4me3 and H3K27me3
Distribution
We next performed ChIP-seq for H3K4me3 and H3K27me3

in SMARCD1-KD and control cells. Analyzing H3K4me3/

H3K27me3 global distributions showed that both modifications
2026 Cell Reports 10, 2019–2031, March 31, 2015 ª2015 The Author
exhibited altered levels in the SMARCD1-KD cells, both before

and after RA-induced differentiation. 13,024 genes were marked

with H3K4me3 in both control and KD cells, 1,004 genes were

marked with H3K4me3 in control cells only, and 2,224 genes

were marked with H3K4me3 in KD cells only (Figure 7A). Hence,

the number of genes marked with H3K4me3 was slightly

elevated in the KD cells. After differentiation, the number of

genes marked with H3K4me3 in KD cells was considerably

elevated. 13,676 genes were marked with H3K4me3, 46 genes

were marked with H3K4me3 in control cells, and 2,952 genes

were marked with H3K4me3 in KD cells (Figure 7A). Western

blot analysis showed no discernible change in the global levels

of H3K4me3 in the KD cells compared to the control cells both

before and after differentiation (Figure S7A).
s



Figure 6. SMARCD1 Is Enriched in Genic Regions

(A) SMARCD1 binding sites enrichment in intergenic and genic regions

(50 UTR, 30 UTR, exonic, promoter, and intronic) in ESCs (dark gray) and in RA-

induced cells (RA, light gray). Note highly significant enrichment in intronic and

exonic regions and significant enrichment in promoter and 30 UTR regions.

(B) Venn diagram of genes bound by SMARCD1 from ESCs (left) and RA-

induced differentiated cells (right). 650 genes overlap, 1,462 are unique for

ESCs, and 1,756 are unique for RA-induced differentiated cells (p < 10�9,

Fisher’s exact test).

(C) SMARCD1 distribution ±5 kb around the transcription start site (TSS) in

ESCs (blue) and in RA-induced cells (RA, red).
Interestingly, unlike H3K4me3, which showed the same trend

in pluripotent and differentiating ESCs, the number of genes

marked with H3K27me3 exhibited an opposite trend; in undiffer-

entiated ESCs, 3,304 genes were marked with H3K27me3 in

both control and KD cells, 239 genes were marked with

H3K27me3 in control cells only, and 2,413 genes were marked

with H3K27me3 in KD cells only. Hence, the number of genes

marked with H3K27me3 was considerably elevated in the KD

cells. Upon differentiation, the number of genes marked with

H3K27me3 in the KD cells was dramatically reduced by 78%;

582 genes were marked with H3K27me3 in both groups, 2,826

genes were marked with H3K27me3 in control cells only, and

155 genes were marked with H3K27me3 in KD cells only (Fig-

ure 7B). Surprisingly, quantification of H3K27me3 levels by west-

ern blotting of isolated chromatin fractions in SMARCD1-KD

versus control cells showed a slight increase in H3K27me3 level

in the SMARCD1-KD cells, both in undifferentiated and in differ-

entiated cells (Figure S7B), suggesting that it is not the total

H3K27me3 chromatin bound fraction that was altered upon

SMARCD1-KD but rather its distribution, with a selective

decrease in genic regions.

We therefore tested the levels of H3K4me3 and H3K27me3

around genic regions, ±5 kb from the TSS. In ESCs, the charac-

teristic H3K4me3 distribution around the TSS was overall pre-

served in SMARCD1-KD cells, albeit with a small elevation just

before the TSS (Figure 7C). This elevation was more pronounced
Cell
in RA-induced differentiating SMARCD1-KD cells (Figure 7D).

The opposite phenomenon was observed for H3K27me3 pat-

terns: a slight reduction in H3K27me3 around the TSS was

observed in undifferentiated SMARCD1-KD ESCs (Figure 7E),

which was almost completely abolished in RA-treated cells

(Figure 7F).

SMARCD1 Binding Is Associated with Gene Induction
during Differentiation
To ask whether up- or downregulated genes upon SMARCD1

KD are differentially marked by H3K4me3 and H3K27me3 levels,

we compared H3K4me3 and H3K27me3 ChIP-seq data with

the SMARCD1-KD gene expression data. The read density

spanning ±5 kb of TSSs of 19,885 genes from the RefSeq data-

base was compared with genes that were sorted according to

the expression array: from genes that were highly expressed in

the KD clones to genes that were highly expressed in the control

cells. A general elevation of both H3K4me3 and H3K27me3 at

genic regions can be seen in undifferentiated SMARCD1-KD

ESCs, regardless of the expression level of the bound genes

(Figure 7G). However, within the over 500 downregulated genes,

the�25%most significantly downregulated displayed markedly

reduced H3K4me3 levels (Figure 7G, bottom left), potentially ex-

plaining their downregulation. Also, in this group of genes, the

elevation of H3K27me3 was most pronounced (Figure 7G, bot-

tom right). In the RA-differentiated cells, H3K4me3 levels were

elevated across the upregulated genes and unaltered across

the downregulated genes in the SMARCD1-KD clones (Fig-

ure 7H, left). In stark contrast, H3K27me3 levels were dramati-

cally decreased in the SMARCD1-KD cells across all the genes

regardless of their expression level (Figure 7H, right), although

this decrease was most significant in the upregulated genes.

Taken together, these data suggest that SMARCD1 regulates

genic distribution of H3K4me3 and mostly of H3K27me3, regu-

lating, at least to some extent, the expression of these genes.

SMARCD1 Regulates KLF4 in a Direct and Indirect
Manner
As noted earlier, a key TF that had higher expression levels in

both ESCs and RA-treated cells following SMARCD1 KD is

KLF4 (Figures 5D and 5F). To test whether the expression of

KLF4 can be explained by H3K4me3/H3K27me3 levels, we

examined both these marks around Klf4’s TSS and in the gene

body itself (Figure 7I). In the undifferentiated state, H3K4me3

levels were higher in the KD cells compared with the control

cells, while H3K27me3 levels were low in both KD and control

cells. This may explain the high levels of KLF4 in both KD clones

1a and 1b (�4.8- and �3.5-fold, respectively) (Figure 5F).

Following RA-induced differentiation, H3K4me3, but not

H3K27me3, showed a similar trend to the one observed in the

ESC state. H3K4me3 levels were higher in the KD clones

compared to the control cells and H3K27me3 was almost abol-

ished in the KD clones, again probably explaining the high levels

of KLF4 in both KD clones (�7- and�9.7-fold, respectively) (Fig-

ure 5F). In addition, SMARCD1 was found to be associated with

Klf4’s promoter, 4 kb upstream of the TSS, in undifferentiated,

but not differentiated, ESCs (Figure 7I, red box), suggesting a

direct association of SMARCD1 with the Klf4 gene. To test if
Reports 10, 2019–2031, March 31, 2015 ª2015 The Authors 2027



Figure 7. SMARCD1 Controls H3K4me3 and

H3K27me3 Distribution around TSSs

(A) The number of genes enrichedwith H3K4me3 in

ESCs and in RA-induced cells. Shared genes are

labeled with dark gray.

(B) The number of genes enriched with H3K27me3

in ESCs and in RA-induced cells. Shared genes are

labeled with dark gray. Note the reduction in the

number of H3K27me3 marked genes in the RA-

induced KD cells.

(C and D) Composite plot of normalized H3K4me3

peaks ±5 kb around the TSS in KD (purple) and S2

control (green) ESC (C) and RA-induced (D) clones.

(E and F) Same as (C) and (D) for H3K27me3.

(G) Read densities of H3K4me3 and H3K27me3 in

ESC in a window of 10 kb around the TSSs of

19,885 RefSeq genes. Genes were sorted from

highly expressed in the KD clones to highly ex-

pressed in control cells based on the expression

arrays.

(H) Same as (G) for RA-differentiated clones.

(I) H3K4me3, H3K27me3, and SMARCD1 read

density around Klf4’s promoter, TSS, and gene

body in ESCs (top) and RA-induced cells (RA)

(bottom). Red box denotes a MACS peak of

SMARCD1 in undifferentiated ESCs 4 kb upstream

of Klf4’s promoter. The Klf4 gene (bottom) is

shown in blue, from right to left.
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depletion of SMARCD1 results in clearance of the Klf4 promoter

from other esBAF components, we performed ChIP-qPCR for

BRG1 and found a slight but consistent enrichment (2-fold) on

the Klf4 promoter (Figure S7C). The Oct4 promoter showed no

such enrichment (Figure S7C). Taken together, these data

suggest that SMARCD1 acts to silence KLF4 by regulating the

levels of H3K27me3 at the Klf4 promoter. Its co-expression

with the endodermal marker FOXA2 in the RA-differentiated

SMARCD1-KD cells, as well as a recent report that suggested

its role in early endodermal differentiation (Cao et al., 2012),

may explain the preferred endodermal over ectodermal differen-

tiation observed in the SMARCD1-KD cells.

DISCUSSION

In this study, we present a useful biochemical assay, D-CAP, for

the identification of proteins that are differentially bound to chro-

matin between two cell types. We employed this assay to char-

acterize and compare the differential association of proteins to

chromatin in pluripotent ESCs and differentiating NPCs. Many

of the proteins that we found to be associated with chromatin

in ESCs are known to have an ESC-related role, e.g., HDAC1

(Dovey et al., 2010; Jurkin et al., 2011; Kidder and Palmer,

2012); DDX18, SNRPD2, and SMC1a (Fazzio et al., 2008); and

SMARCC1 (Fazzio et al., 2008; Ho et al., 2009b; Schaniel

et al., 2009). These published works, combined with our

D-CAP results, suggest that chromatin-associated proteins

have a functional role in ESC biology. D-CAP can be employed

in ESCs to study various differentiation pathways but can also

be harnessed to compare essentially any two or more cell types,

including during development, in disease states, and following

various treatments.

Unlike proteome analysis of whole-extract samples from

nuclei of ESCs and differentiated cells (Barthéléry et al., 2009;

Kurisaki et al., 2005; Lu et al., 2009), D-CAP enables one to

distinguish between proteins that are expressed roughly at

similar levels but display differential association to chromatin,

as we observed for SMARCC1 and SMARCD1. Although their

protein levels in ESCs and NPCs remained unaltered, the asso-

ciation of these proteins with chromatin changed, possibly sug-

gesting a different role for these as well as other proteins in ESCs

and during differentiation. This was further verified by ChIP-seq,

where only 30% of the genes (650/2,112) bound by SMARCD1

were common to both ESCs and RA-induced differentiating

cells.

In contrast to other subunits of the esBAF complex (Gaspar-

Maia et al., 2011; Ho et al., 2009b), in our hands, depletion of

SMARCD1 had a limited effect on the pluripotent state of ESCs

using both knockout and KD approaches. A recent study

showed that in D3 ESCs, SMARCD1 KD led to spontaneous dif-

ferentiation (Gao et al., 2012). This could be explained

by different SMARCD1 levels achieved in different clones, lead-

ing to different esBAF subunit stoichiometry. Regardless,

SMARCD1 KD in differentiating cells resulted in a much more

prominent phenotype including aberrant differentiation and

increased levels of pluripotency markers. Although complete

KO of SMARCD1 did not affect undifferentiated ESCs, it resulted

in extensive cell death when the cells were induced to differen-
Cell
tiate. This suggests that SMARCD1 may act as a regulator of

the pluripotency network, shutting down key components during

the early stages of differentiation to enable differentiation to pro-

ceed. The only major difference observed in the undifferentiated

state due to SMARCD1 KD was a more open chromatin confor-

mation: HP1a distribution was affected, H3 acetylation levels

were higher, and FRAP analysis revealed higher mobility of H1,

which coincides with higher histone acetylation levels and a

more relaxed chromatin state (Melcer et al., 2012). Increased his-

tone acetylation and chromatin plasticity in ESCs was previously

shown to have limited effect on the undifferentiated state (Bou-

dadi et al., 2013; Hezroni et al., 2011b), in agreement with our

current results.

While induction of NPCs and cardiomyocytes from

SMARCD1-KD clones led to impaired differentiation, RA, which

is a less selective differentiation agent, led to the generation of

two distinct cell populations, each expressing a different lineage

marker (NES or GATA4). This indicates that under these condi-

tions, SMARCD1 KD led to a shift from ectodermal to endo-

dermal differentiation. Our gene expression data, which showed

upregulation of endodermal genes and downregulation of

ectodermal genes in the RA-induced KD cells, strengthened

this conclusion. It would be interesting to check whether

SMARCD1-KD ESCs can differentiate more easily into endo-

derm and perhaps become a better source for endodermal dif-

ferentiation, as our data suggest.

Our combined ChIP-seq and expression analyses suggest

that SMARCD1 may regulate gene expression both directly

and indirectly, likely through interactions with different TFs and

transcriptional regulator complexes. Our ChIP-seq results sug-

gest that TP53 (p53) is one of these SMARCD1 partners.

SMARCD1 and p53 show a significantly high degree of co-local-

ization, and p53 itself interacts with the SWI/SNF complex via

SMARCD1 (Oh et al., 2008). In ESCs, p53 is important for the

repression of key transcriptional regulators such as OCT4,

NANOG, and SOX2 (Li et al., 2012). As indicated above,

SMARCD1 is probably required to enable the repression of these

TFs during early differentiation. In the absence of SMARCD1, the

pluripotency factors escape repression, their expression re-

mains high, and differentiation is severely inhibited.

Interestingly, SMARCD1 KD in ESCs had an opposite effect to

a KD of another chromatin remodeler, CHD1, we previously

studied (Gaspar-Maia et al., 2009). In both cases, the KD did

not affect pluripotent marker expression in the undifferentiated

state, but in contrast to SMARCD1, the CHD1-KD cells accumu-

lated high levels of heterochromatin and differentiated preco-

ciously, suggesting that CHD1 acts to keep chromatin open,

while SMARCD1 acts to keep chromatin closed. Regardless,

both chromatin remodelers are important to establish the correct

balance between euchromatin and heterochromatin in ESCs,

which is likely critical for the maintenance of pluripotency.

How does SMARCD1 exert its effect on ESCs? Our combined

ChIP-seq and gene expression studies suggest a two-level

mechanism: first, by directly regulating the pluripotency-related

factor KLF4, which is one of the four ‘‘Yamanaka factors’’ used

for reprogramming somatic cells into induced pluripotent stem

cells (iPSCs); and second, by a more global influence on chro-

matin structure by regulating the levels of histone modifications,
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mostly of H3K27me3, which is required to silence developmental

genes in ESCs, as well as pluripotency genes in differentiating

cells (Bernstein et al., 2006; Mikkelsen et al., 2007; Pan et al.,

2007; Zhao et al., 2007). This dual action is likely also mediated

by other members of the esBAF complex of which SMARCD1 is

a member. Depletion of SMARCD1 likely results in altered stoi-

chiometry of the different subunits in the complex, potentially

leading to its aberrant functioning. This is supported by more

recent observations showing that depletion of the catalytic sub-

unit of the esBAF complex, BRG1, also causes global changes in

PRC2 and H3K27me3 (Ho et al., 2011).

To summarize, in this study, we present a method to identify

chromatin-associated proteins that are enriched in one cell

population over the other, and we employed it to identify differ-

entially bound chromatin proteins between undifferentiated

and partially differentiated ESCs. Using this method, which we

named D-CAP, we identified the chromatin remodeling protein

SMARCD1, which displayed more significant association with

chromatin in ESCs compared to differentiated cells. Our func-

tional studies suggest an important role for SMARCD1 in early

differentiation events and for maintaining the balance between

euchromatin and heterochromatin. In conclusion, our results

demonstrate the role of SMARCD1 in restricting the pluripotency

network and activating various differentiation pathways.

EXPERIMENTAL PROCEDURES

Cell Culture

Mouse R1 ESCs were cultured as described before (Melcer et al., 2012).

Differentiation procedures are described in Supplemental Experimental

Procedures.

Micrococcal Nuclease Digestion

Fresh nuclei from ESCs or NPCs were washed (four times), resuspended in

MNase digestion buffer (10 mM Tris-HCl [pH 8], 5 mM CaCl2, 150 mM KCl,

0.1 mM PMSF, and protease inhibitor cocktail 1:100 [Sigma]), rotated (4�C,
30 min), and centrifuged (500 3 g, 4�C, 5 min). Nuclei were then subjected

to different MNase concentrations (0/1.5/3/4.5/1,000 U/ml MNase [Worthing-

ton]) in MNase digestion buffer. Reactions were stopped by adding 103

MNase Stop Buffer (100 mM Tris-HCl [pH 7.5], 100 mM EDTA, and 10 mM

EGTA) followed by centrifugation (13,000 3 g, 4�C, 10 min). Supernatants

were collected and subjected to LC-MS/MS analyses. To verify the MNase

digestion, DNA was purified from the pellets and electrophoresed.

Gene Expression Analysis

Total RNA was extracted and subjected to GeneChip Mouse Gene 1.0ST

Arrays (Affymetrix). Data were normalized with the robust multiarray average

method using the Affymetrix Expression Console (version 1.1). See also Sup-

plemental Experimental Procedures.

ChIP

ChIP was performed as described previously (Sailaja et al., 2012). Antibodies

used included BRG1 (ab110641, Abcam), H3K4me3 (ab8580, Abcam),

H3K27me3 (07-449, Millipore), and SMARCD1 (611728, BD). ChIP-seq was

done as described previously (Hezroni et al., 2011a) using the SOLiD4

sequencer (ABI).

Mass Spectrometry of Proteins

Proteins were reduced, alkylated, and trypsinized as described previously

(Dutta et al., 2012; Sanders et al., 2002). The peptides were subjected to

reverse-phase microcapillary electrospray ionization LC-MS/MS. See also

Supplemental Experimental Procedures.
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Barthéléry, M., Jaishankar, A., Salli, U., Freeman, W.M., and Vrana, K.E.

(2009). 2-D DIGE identification of differentially expressed heterogeneous nu-

clear ribonucleoproteins and transcription factors during neural differentiation

of human embryonic stem cells. Proteomics Clin. Appl. 3, 505–514.

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry,

B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin

structure marks key developmental genes in embryonic stem cells. Cell 125,

315–326.

Bo�skovi�c, A., Eid, A., Pontabry, J., Ishiuchi, T., Spiegelhalter, C., Raghu Ram,

E.V., Meshorer, E., and Torres-Padilla, M.E. (2014). Higher chromatin mobility

supports totipotency and precedes pluripotency in vivo. Genes Dev. 28, 1042–

1047.

Boudadi, E., Stower, H., Halsall, J.A., Rutledge, C.E., Leeb, M., Wutz, A.,

O’Neill, L.P., Nightingale, K.P., and Turner, B.M. (2013). The histone deacety-

lase inhibitor sodium valproate causes limited transcriptional change in mouse

embryonic stem cells but selectively overrides Polycomb-mediated Hoxb

silencing. Epigenetics Chromatin 6, 11.

Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P.,

Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., et al. (2005). Core

transcriptional regulatory circuitry in human embryonic stem cells. Cell 122,

947–956.

Cao, Q., Zhang, X., Lu, L., Yang, L., Gao, J., Gao, Y., Ma, H., and Cao, Y.

(2012). Klf4 is required for germ-layer differentiation and body axis patterning

during Xenopus embryogenesis. Development 139, 3950–3961.
s

http://meshorerlab.huji.ac.il/downloads.html
http://dx.doi.org/10.1016/j.celrep.2015.02.064


Chen, X., Xu, H., Yuan, P., Fang, F., Huss,M., Vega, V.B.,Wong, E., Orlov, Y.L.,

Zhang, W., Jiang, J., et al. (2008). Integration of external signaling pathways

with the core transcriptional network in embryonic stem cells. Cell 133,

1106–1117.

Chen, L., Fulcoli, F.G., Ferrentino, R., Martucciello, S., Illingworth, E.A., and

Baldini, A. (2012). Transcriptional control in cardiac progenitors: Tbx1 interacts

with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS

Genet. 8, e1002571.

Christodoulou, C., Longmire, T.A., Shen, S.S., Bourdon, A., Sommer, C.A., Ga-

due, P., Spira, A., Gouon-Evans, V., Murphy, G.J., Mostoslavsky, G., and Kot-

ton, D.N. (2011). Mouse ES and iPS cells can form similar definitive endoderm

despite differences in imprinted genes. J. Clin. Invest. 121, 2313–2325.

Dovey, O.M., Foster, C.T., and Cowley, S.M. (2010). Histone deacetylase 1

(HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc.

Natl. Acad. Sci. USA 107, 8242–8247.

Dutta, B., Adav, S.S., Koh, C.G., Lim, S.K., Meshorer, E., and Sze, S.K. (2012).

Elucidating the temporal dynamics of chromatin-associated protein release

upon DNA digestion by quantitative proteomic approach. J. Proteomics 75,

5493–5506.

Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D.J., Dash, C.,

Bazett-Jones, D.P., Le Grice, S., McKay, R.D., Buetow, K.H., et al. (2008).

Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2,

437–447.

Farthing, C.R., Ficz, G., Ng, R.K., Chan, C.-F., Andrews, S., Dean, W., Hem-

berger, M., and Reik, W. (2008). Global mapping of DNA methylation in mouse

promoters reveals epigenetic reprogramming of pluripotency genes. PLoS

Genet. 4, e1000116.

Fazzio, T.G., Huff, J.T., and Panning, B. (2008). An RNAi screen of chromatin

proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity.

Cell 134, 162–174.

Gao, Z., Cox, J.L., Gilmore, J.M., Ormsbee, B.D., Mallanna, S.K., Washburn,

M.P., and Rizzino, A. (2012). Determination of protein interactome of transcrip-

tion factor Sox2 in embryonic stem cells engineered for inducible expression of

four reprogramming factors. J. Biol. Chem. 287, 11384–11397.

Gaspar-Maia, A., Alajem, A., Polesso, F., Sridharan, R., Mason, M.J., Heiders-

bach, A., Ramalho-Santos, J., McManus, M.T., Plath, K., Meshorer, E., and

Ramalho-Santos, M. (2009). Chd1 regulates open chromatin and pluripotency

of embryonic stem cells. Nature 460, 863–868.

Gaspar-Maia, A., Alajem, A., Meshorer, E., and Ramalho-Santos, M. (2011).

Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell

Biol. 12, 36–47.

Hezroni, H., Sailaja, B.S., and Meshorer, E. (2011a). Pluripotency-related, val-

proic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation

patterns in embryonic stem cells. J. Biol. Chem. 286, 35977–35988.

Hezroni, H., Tzchori, I., Davidi, A., Mattout, A., Biran, A., Nissim-Rafinia, M.,

Westphal, H., and Meshorer, E. (2011b). H3K9 histone acetylation predicts

pluripotency and reprogramming capacity of ES cells. Nucleus 2, 300–309.

Ho, L., Jothi, R., Ronan, J.L., Cui, K., Zhao, K., and Crabtree, G.R. (2009a). An

embryonic stem cell chromatin remodeling complex, esBAF, is an essential

component of the core pluripotency transcriptional network. Proc. Natl.

Acad. Sci. USA 106, 5187–5191.

Ho, L., Ronan, J.L., Wu, J., Staahl, B.T., Chen, L., Kuo, A., Lessard, J., Nesvizh-

skii, A.I., Ranish, J., and Crabtree, G.R. (2009b). An embryonic stem cell

chromatin remodeling complex, esBAF, is essential for embryonic stem cell

self-renewal and pluripotency. Proc. Natl. Acad. Sci. USA 106, 5181–5186.

Ho, L., Miller, E.L., Ronan, J.L., Ho, W.Q., Jothi, R., and Crabtree, G.R. (2011).

esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 sig-

nalling and by regulating polycomb function. Nat. Cell Biol. 13, 903–913.

Hsiao, P.W., Fryer, C.J., Trotter, K.W., Wang, W., and Archer, T.K. (2003).

BAF60a mediates critical interactions between nuclear receptors and the

BRG1 chromatin-remodeling complex for transactivation. Mol. Cell. Biol. 23,

6210–6220.
Cell
Jurkin, J., Zupkovitz, G., Lagger, S., Grausenburger, R., Hagelkruys, A., Ken-

ner, L., and Seiser, C. (2011). Distinct and redundant functions of histone de-

acetylases HDAC1 and HDAC2 in proliferation and tumorigenesis. Cell Cycle

10, 406–412.

Kidder, B.L., and Palmer, S. (2012). HDAC1 regulates pluripotency and lineage

specific transcriptional networks in embryonic and trophoblast stem cells.

Nucleic Acids Res. 40, 2925–2939.

Kidder, B.L., Palmer, S., and Knott, J.G. (2009). SWI/SNF-Brg1 regulates self-

renewal and occupies core pluripotency-related genes in embryonic stem

cells. Stem Cells 27, 317–328.

Kurisaki, A., Hamazaki, T.S., Okabayashi, K., Iida, T., Nishine, T., Chonan, R.,

Kido, H., Tsunasawa, S., Nishimura, O., Asashima, M., and Sugino, H. (2005).

Chromatin-related proteins in pluripotent mouse embryonic stem cells are

downregulated after removal of leukemia inhibitory factor. Biochem. Biophys.

Res. Commun. 335, 667–675.

Lessard, J.A., and Crabtree, G.R. (2010). Chromatin regulatory mechanisms in

pluripotency. Annu. Rev. Cell Dev. Biol. 26, 503–532.

Li, M., He, Y., Dubois, W., Wu, X., Shi, J., and Huang, J. (2012). Distinct regu-

latory mechanisms and functions for p53-activated and p53-repressed DNA

damage response genes in embryonic stem cells. Mol. Cell 46, 30–42.

Lu, R., Markowetz, F., Unwin, R.D., Leek, J.T., Airoldi, E.M., MacArthur, B.D.,

Lachmann, A., Rozov, R., Ma’ayan, A., Boyer, L.A., et al. (2009). Systems-level

dynamic analyses of fate change in murine embryonic stem cells. Nature 462,

358–362.

Melcer, S., Hezroni, H., Rand, E., Nissim-Rafinia, M., Skoultchi, A., Stewart,

C.L., Bustin, M., and Meshorer, E. (2012). Histone modifications and lamin A

regulate chromatin protein dynamics in early embryonic stem cell differentia-

tion. Nat. Commun. 3, 910.

Meshorer, E., Yellajoshula, D., George, E., Scambler, P.J., Brown, D.T., and

Misteli, T. (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent

embryonic stem cells. Dev. Cell 10, 105–116.

Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G.,

Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., et al. (2007). Genome-wide

maps of chromatin state in pluripotent and lineage-committed cells. Nature

448, 553–560.

Oh, J., Sohn, D.H., Ko, M., Chung, H., Jeon, S.H., and Seong, R.H. (2008).

BAF60a interacts with p53 to recruit the SWI/SNF complex. J. Biol. Chem.

283, 11924–11934.

Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., Jonsdottir, G.A., Stewart,

R., and Thomson, J.A. (2007). Whole-genome analysis of histone H3 lysine 4

and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1,

299–312.

Sailaja, B.S., Takizawa, T., andMeshorer, E. (2012). Chromatin immunoprecip-

itation in mouse hippocampal cells and tissues. Methods Mol. Biol. 809,

353–364.

Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J., and Weil, P.A. (2002).

Proteomics of the eukaryotic transcription machinery: identification of proteins

associated with components of yeast TFIID by multidimensional mass spec-

trometry. Mol. Cell. Biol. 22, 4723–4738.

Schaniel, C., Ang, Y.S., Ratnakumar, K., Cormier, C., James, T., Bernstein, E.,

Lemischka, I.R., and Paddison, P.J. (2009). Smarcc1/Baf155 couples self-

renewal gene repression with changes in chromatin structure in mouse embry-

onic stem cells. Stem Cells 27, 2979–2991.

Serrano, L., Vazquez, B.N., and Tischfield, J. (2013). Chromatin structure, plu-

ripotency and differentiation. Exp. Biol. Med. (Maywood) 238, 259–270.

Skottman, H., Mikkola, M., Lundin, K., Olsson, C., Strömberg, A.M., Tuuri, T.,
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