Differential Association of Chromatin Proteins Identifies BAF60a/SMARCD1 as a Regulator of Embryonic Stem Cell Differentiation

Highlights

- D-CAP identifies differentially bound chromatin proteins between different cell types
- SMARCD1, identified by D-CAP, regulates ectodermal differentiation of ESCs
- SMARCD1 is associated with bivalent genes and regulates H3K4me3/H3K27me3 distribution
- SMARCD1 binds and regulates Klf4 directly and indirectly

Authors

Adi Alajem, Alva Biran, ..., Siu Kwan Sze, Eran Meshorer

Correspondence

meshorer@huji.ac.il

In Brief

Alajem et al. develop an assay that indicates differential association of SMARCD1 with chromatin in embryonic stem cells (ESCs) and early-differentiating cells. SMARCD1 is associated with bivalent genes in ESCs, regulates H3K4me3/H3K27me3 distribution, and binds and regulates the pluripotency factor Klf4.

Accession Numbers

GSE65089
Differential Association of Chromatin Proteins Identifies BAF60a/SMARCD1 as a Regulator of Embryonic Stem Cell Differentiation

Adi Alajem,1 Alva Biran,1 Arigela Harikumar,1 Badi Sri Sailaja,1 Yair Aaronson,1 Ilana Livyatan,1 Malka Nissim-Rafinia,1 Andrea Gianotti Sommer,2 Gustavo Mostoslavsky,2 Vincent R. Gerbasi,3,4 Daniel E. Golden,5 Arnab Datta,6 Siu Kwan Sze,6 and Eran Meshorer1,7,*

1Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
2Section of Gastroenterology, Department of Medicine, Center for Regenerative Medicine (CReM), Boston University School of Medicine, 670 Albany Street, Suite 209, Boston, MA 02118, USA
3Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
4Naval Medical Research Center, Silver Spring, MD 20910, USA
5Merial Inc., a Sanofi Company, Duluth, GA 30096, USA
6School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
7The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
*Correspondence: meshorer@huji.ac.il http://dx.doi.org/10.1016/j.celrep.2015.02.064
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

SUMMARY

Embryonic stem cells (ESCs) possess a distinct chromatin conformation maintained by specialized chromatin proteins. To identify chromatin regulators in ESCs, we developed a simple biochemical assay named D-CAP (differential chromatin-associated proteins), using brief micrococcal nuclease digestion of chromatin, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Using D-CAP, we identified several differentially chromatin-associated proteins between undifferentiated and differentiated ESCs, including the chromatin remodeling protein SMARCD1. SMARCD1 depletion in ESCs led to altered chromatin and enhanced endodermal differentiation. Gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggested that SMARCD1 is both an activator and a repressor and is enriched at developmental regulators and that its chromatin binding coincides with H3K27me3. SMARCD1 knockdown caused H3K27me3 redistribution and increased H3K4me3 around the transcription start site (TSS). One of the identified SMARCD1 targets was Klf4. In SMARCD1 knockdown clones, KLF4, as well as H3K4me3 at the Klf4 locus, remained high and H3K27me3 was abolished. These results propose a role for SMARCD1 in restricting pluripotency and activating lineage pathways by regulating H3K27 methylation.

INTRODUCTION

Embryonic stem cells (ESCs) possess the remarkable ability to differentiate into any cell type of the three germ layers: endoderm, mesoderm, and ectoderm. This unique capacity is at least partially achieved owing to the distinct chromatin state of ESCs, described as more open (Gaspar-Maia et al., 2011), and their characteristic transcriptional network governed by OCT4, SOX2, and NANOG (Boyer et al., 2005; Chen et al., 2008; Skottman et al., 2005). Chromatin structure and function are maintained by histone modifications and chromatin remodeling proteins. Developmental genes in ESCs are bivalently marked by the “active” histone 3-lysine 4 trimethylation (H3K4me3) and the “repressive” H3K27me3. This allows developmental genes rapid activation or repression upon differentiation (Bernstein et al., 2006; Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al., 2007).

Accumulating data suggest important roles for chromatin remodeling proteins in maintaining the characteristic chromatin state in ESCs (Gaspar-Maia et al., 2009; Lessard and Crabtree, 2010; Serrano et al., 2013). There are four different families of chromatin remodelers, each having a role in ESC biology: SWI/SNF (switch/sucrose non-fermentable), CHD (chromodomain helicase DNA binding), ISWI (imitation switch), and INO80 (inositol requiring 80). The SWI/SNF family of chromatin remodelers has a special subunit composition in ESCs termed esBAF (BRG-associated factor) (Ho et al., 2009b). It was shown that several subunits of the esBAF complex (e.g., BRG1 and SMARCC1) are downregulated during differentiation (Efroni et al., 2008; Ho et al., 2009b), forming different complexes in differentiated cells (Ho et al., 2009b). BRG1 (a.k.a. SMARCA4), the catalytic subunit of esBAF, is essential for ESCs. BRG1 knockdown led to irregular ESC morphology, reduced proliferation rate, and decreased differentiation capacity (Efroni et al., 2008; Fazzio et al., 2008; Ho et al., 2009b; Kidder et al., 2009). Brg1 was found to support pluripotency by two opposing mechanisms: on one hand, enabling leukemia inhibitory factor (LIF) signaling by counteracting Polycomb group (PcG) proteins, and on the other hand, facilitating PcG function at its targets (Ho et al., 2011). In addition to Brg1, several other chromatin remodeling proteins were shown to regulate the
stem cell state (Gaspar-Maia et al., 2011; Lessard and Crabtree, 2010), suggesting a central role for chromatin remodelers in pluripotency maintenance and differentiation. Despite these recent advances, the molecular mechanisms and players that link chromatin, transcription, differentiation capacity, and pluripotency of stem cells have only been partially elucidated.

Here, we developed an unbiased approach for identifying chromatin-associated proteins that are specifically enriched on chromatin of pluripotent or differentiating ESCs but that can be applied to compare any two cell types, developmental stages, or various treatments. Unlike candidate-driven proteomics-based screens such as co-immunoprecipitation (co-IP), we analyzed all the released proteins in both cell states following micrococcal nuclease (MNase) digestion of chromatin, enabling us to identify cell-state-specific chromatin binding proteins by mass spectrometry. Using this approach, we identified SMARCD1 (a.k.a. BAF60a) as preferentially bound to chromatin in ESCs. SMARCD1 is a member of the SWI/SNF family and acts in recruiting transcription factors (TFs), such as Tbx1 and p53, using SMARCC1 and SMARCD1 (a.k.a. BAF155 and BAF60a, respectively), both of which are chromatin remodeling proteins of the SWI/SNF chromatin remodeling complex. The involvement of SMARCD1 in ESC biology was recently suggested by several studies. First, esBAF is enriched for SMARCD1 (Boyer et al., 2005; Ho et al., 2009b); second, genome-wide promoter analysis of DNA methylation in mouse ESCs and primary mouse embryonic fibroblasts (MEFs) showed that the Smarcd1 promoter is hypomethylated in ESCs and hypermethylated in differentiated cells (Farthing et al., 2008); and third, a direct interaction between SMARCD1 and SOX2 was identified in a recent proteomic study in ESCs (Gao et al., 2012).

In this work, we demonstrate the strength of our unbiased proteomic approach and specifically suggest a role for SMARCD1 in ESC biology. We show that SMARCD1-knockdown (Smarcd1-KD) ESCs exhibit altered chromatin and a perturbed differentiation phenotype. Gene expression analysis suggested that SMARCD1 acts as both an activator and a repressor. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) demonstrated that SMARCD1 is enriched in developmental regulators, that its binding pattern around transcription start sites (TSSs) is similar to that of H3K27me3, and that SMARCD1 depletion severely affects the global levels and distribution of H3K27me3. Taken together, these results suggest that SMARCD1 acts to restrict pluripotency and activate lineage programs during early commitment by regulating H3K27 methylation to facilitate differentiation.

RESULTS

Differential Association of Chromatin Proteins with Chromatin between Undifferentiated and Differentiated ESCs

In order to identify chromatin-associated proteins that are differentially associated with chromatin between different stages of differentiation, we developed an assay we named D-CAP (differential chromatin-associated associated proteins). In this assay, we purified nuclei from different stages of differentiation, thoroughly washed out all proteins that are not tightly associated with chromatin using consecutive low-salt buffer washes, and briefly treated with increasing levels of MNase. The brief MNase digestion releases chromatin-bound proteins, which are subsequently detected by liquid chromatography tandem mass spectrometry (LC-MS/MS) (Figure 1A). We performed D-CAP on purified nuclei from ESCs and from ESCs differentiated for 7 days along the neuronal lineage into neuronal progenitor cells (NPCs) (Efroni et al., 2008) (Figure S1). As might be expected from the more decondensed chromatin in undifferentiated ESCs, these cells displayed a slight preferential chromatin protein release, as we previously observed (Mesher et al., 2006), but it should be noted that differential dynamics is not a general property of all chromatin proteins (Bošković et al., 2014; Mesher et al., 2006) and thus reflects a unique biological feature of the differentially associated proteins.

Comparing mass spectrometry results between ESCs and NPCs identified chromatin-bound proteins characteristic of each state. An average of ~150 proteins were detected after mild treatment with MNase (3 or 4.5 U/ml), 49 of which were found exclusively in ESCs and 12 exclusively in NPCs (Table S1). Among the ESC-exclusive proteins, we identified SMARCC1 and SMARCD1 (a.k.a. BAF155 and BAF60a, respectively), both of which are chromatin remodeling proteins of the esBAF complex (Ho et al., 2009b).

To validate our analysis, we repeated the D-CAP assay and quantified the levels of SMARCC1 and SMARCD1 using western blots (WBs). Similar to the mass spectrometry results, we found that both proteins were released more readily in the undifferentiated state (Figure 1B). Additionally, to confirm this independently, we performed salt-extraction experiments where chromatin from ESCs and NPCs was subjected to increasing NaCl concentrations, and once again, SMARCC1 and SMARCD1 were released at lower salt concentrations in ESCs than in NPCs (Figure 1C). These results confirm that SMARCC1 and SMARCD1 are differentially associated with chromatin between ESCs and NPCs, as revealed by our D-CAP assay. Differential release was not due to differences in protein abundance between ESCs and NPCs, since the overall levels of both SMARCC1 and SMARCD1 did not change significantly (Figures 1B and 1C, input lanes).

SMARCD1 Depletion Has a Limited Effect in Undifferentiated ESCs

Several chromatin remodeling proteins have previously been identified to have important roles in ESC biology, including SMARCC1 (Ho et al., 2009b; Schaniel et al., 2009). We therefore focused our attention on another member of the esBAF complex, SMARCD1. To elucidate the role of SMARCD1 in ESCs, we generated both SMARCD1-knockout (Smarcd1-KO) clones using CRISPR/Cas9 (Figures S1D and S1E), as well as stable ESC lines constitutively expressing small hairpin RNAs (shRNAs) against SMARCD1 (Figures 2 and S2). SMARCD1 KO was tolerated in undifferentiated ESCs, but differentiation of these cells resulted in extensive cell death preventing careful examination of the SMARCD1-related phenotypes. We therefore concentrated on the SMARCD1-KD clones. SMARCD1 KD was verified in two separate clones (1a and 1b) and was found to be sustained at ~75% and ~50%, respectively, of SMARCD1 levels.
detected in a control line (S2) expressing scrambled oligo shRNA (Figures 2A and 2B) or in wild-type (WT) cells (not shown). SMARCD1-KD clones remained in their undifferentiated state; they formed compact colonies (Figure 2A), expressed the distinct ESC markers Oct4 and Nanog (Figures 2B and 2C), and maintained self-renewal properties and unaffected proliferation rates (Figure S2A). Additionally, SMARCD1-KD ESCs gave rise to teratomas showing indicative cell populations of all three germ layers (Figure S2B).

Since SMARCD1 is a chromatin remodeler, we examined whether KD of this protein affects chromatin protein dynamics and chromatin features as we have previously shown for the chromatin remodeling protein CHD1 (Gaspar-Maia et al., 2009). Fluorescence recovery after photobleaching (FRAP) analysis showed a significant change in the bleach depth of H1e-GFP upon knockdown (KD) of SMARCD1 (Figure S2C), indicating that the H1-GFP fraction in the KD cells is more mobile. In addition, using quantitative immunofluorescence, we tested marks of open chromatin, and found that the levels of histone H3 acetylation (H3ac) were higher in the SMARCD1-KD clones (Figures 2D and 2E), although the levels of H3K4me3 were essentially unaltered between the SMARCD1-KD ESCs and the control cells (Figure S2D). We also tested the levels of two hallmarks of closed chromatin conformation including heterochromatin protein 1α (HP1α) and HP1γ, both of which remained unaltered in the undifferentiated state. HP1γ levels were determined by quantitative immunofluorescence (Figure 2C), and HP1α levels were quantified by western blots from chromatin fractions (Figure 2F). Although the expression level of HP1α did not change significantly in the undifferentiated state, its nuclear distribution was significantly altered, with a reduced number of heterochromatin foci per cell compared with controls (Figure 2G; p < 0.05, two-tailed Student’s t test), opposite to what we previously observed in ESCs deficient for Chd1 (Gaspar-Maia et al., 2009). In retinoic acid (RA)-treated cells, HP1α was significantly reduced in the SMARCD1-KD clones (Figure 2F). The reduction of HP1α was confirmed in both the chromatin-bound and nucleoplasmic fractions to rule out differential distribution or chromatin association of HP1α. Taken together, these data demonstrate that while proliferation rate and pluripotency markers are overall unaffected in SMARCD1-KD cells, chromatin is globally more decondensed with reduced heterochromatin foci and somewhat elevated chromatin plasticity.
SMARCD1 Is Necessary for Proper ESC Differentiation

As mentioned earlier, SMARCD1 KD did not alter Oct4 levels in undifferentiated ESCs and both SMARCD1-KO and SMARCD1-KD clones remained as undifferentiated ESCs when cultured on MEFs in the presence of LIF. To test the situation in differentiated cells, we subjected both cell types to embryoid body (EB) formation and examined the levels of OCT4 using WBs. We found that while in control cells OCT4 is dramatically reduced, as expected, the SMARCD1-KD clones failed to reduce OCT4 levels, which remained significantly higher than in control cells (Figure 3A). These data imply that SMARCD1 might have a role in silencing the pluripotency network upon differentiation. Supporting this notion, real-time quantitative RT-PCR (qPCR) for different markers demonstrated perturbed expression of an additional pluripotency factor, KLF4 (Figure 3B), which is also expressed during early endodermal differentiation (see below), as well as genes associated with ectoderm (Figure 3C), endoderm (Figure 3D) and mesoderm (Figures 3E and S3A) in differentiating SMARCD1-KD EBs.

We next tested the effects of SMARCD1 reduction on differentiation into specific lineages, including mesoderm (cardiomyocytes) and ectoderm (NPCs and RA-induced differentiation). In the initial stages of mesodermal differentiation, the morphology of EB formation as well as re-plating, monolayer spreading, and cell proliferation was seemingly unaffected, but at differentiation day 10, KD clones showed a remarkable 10-fold reduction in the number of beating foci compared to control cells (Figure 4A). Real-time qPCR analysis for cardiomyocyte markers at differentiation day 12 showed a significant reduction (ranging from 3- to 33-fold) in the expression levels of the three mesodermal markers tested, including Alcam, Tnnt2, and Nppa (Figure 4B). The early stages of ectodermal differentiation were also unaffected, with KD cells properly forming EBs, although when these EBs were re-plated in NPC-inducing medium, they gave rise to 4-fold fewer NPCs compared to control cells (Figures 4C and 4D). In RA-induced differentiating cells, which remain as a monolayer and do not transition through an EB stage, SMARCD1 reduction notably altered cell morphology, with shrunken cytoplasmics compared with control cells, and a 40% reduction in cell length (Figures 4E and 4F). In agreement, Nestin (a hallmark of neuronal lineage...
specification) levels, determined by WBs (Figure 4G) and qPCR (Figure 5H), were significantly reduced, and the number of Nestin-positive cells, determined by immunofluorescence staining (Figure 4H), decreased by over 2-fold in both fluorescence levels and the percentage of Nestin-positive cells (Figures 4I and 4J). Cell re-organization upon RA-induced differentiation was also affected by SMARCD1 KD. While control cells grew as a uniform monolayer, SMARCD1-KD cells organized into two distinct morphological populations that differed by the expression of Nestin or GATA4 (Figure 4I) in one sub-population and 4J). Cell re-organization upon RA-induced differentiation was also affected by SMARCD1 KD. While control cells grew as a uniform monolayer, SMARCD1-KD cells organized into two distinct morphological populations that differed by the expression of Nestin or GATA4 (Figure 4I) in one sub-population and Laminin1 or FOXA2 in the other (Figures S4A and S4B). RA-induced, FOXA2-positive, SMARCD1-KD cells also showed elevated levels of KLF4 (Figure S4B) and directed endodermal differentiation (Christodoulou et al., 2011) resulted in enhanced endodermal marker expression in the SMARCD1-KD clones compared with WT (Figure S4C). We thus tested whether the increased KLF4 levels in these cells may explain the perturbed differentiation phenotypes by repeating these experiments under low-KLF4 conditions using infection with KLF4-specific shRNAs. When KLF4 was silenced in the differentiating SMARCD1-KD cells, the exaggerated endodermal differentiation phenotype was almost completely restored (Figure S4D), suggesting that the failure to silence KLF4 in the SMARCD1-KD cells is largely responsible for the perturbed differentiation phenotype. LacZ-KD, used as control, did not rescue these phenotypes (Figure S4D), and KD of KLF4 in control cells had no effect (Figure S4D, bottom). Taken together, these results demonstrate that SMARCD1 is essential for ESC differentiation and that its reduction leads to enhanced endodermal differentiation, mediated largely by the failure to repress KLF4, at the expense of ectodermal and mesodermal differentiation.

Gene Expression Analyses Support Differentiation Abnormalities

In order to understand global effects of SMARCD1 KD on gene expression and the role of SMARCD1 in proper ESC differentiation, we analyzed changes in gene expression in both undifferentiated ESCs and in RA-treated ESCs (4 days) (Table S4). The different SMARCD1-KD clones showed very good reproducibility and clustered together by Pearson’s correlation (Figure 5A).

To validate the microarray results, we performed qPCR for a variety of different genes in both ESCs and RA-induced differentiated cells and found a very high correlation between the microarray and qPCR results ($R^2 = 0.844$) (Figures 5B and 5E–5J).

Since the esBAF complex was shown to act as both an activator and a repressor (Ho et al., 2009a), we speculated that SMARCD1 KD would lead to both upregulation and downregulation of genes. Indeed, 236 genes were upregulated and 511 genes were downregulated in SMARCD1-KD ESCs. This trend was much more prominent in the RA-differentiated cells, with 1,088 upregulated and 1,240 downregulated genes (Figure 5C). Gene Ontology (GO) analysis for genes downregulated in RA-differentiating KD clones showed the most significant score ($p < 0.001$) and included terms related to differentiation and cellular regulation (Figure S5A), DNA binding (Figure S5B), and extracellular matrix (ECM) (Figure S5C), compared with control cells. A closer examination of the perturbed genes showed downregulation of ectodermal (e.g., Nes, Sema3a, and Vim) (Figure S5D) and mesodermal (e.g., Col1a1, Col2a1, and Wt1) (Figure S5E) markers and upregulation of endodermal markers (e.g., Gata4, Gata6, and Sox7) upon differentiation (Figure S5F). Pluripotency markers were upregulated both before and after differentiation (Figures 5D–5G). Overall, our gene expression analyses support the cellular phenotype we observed in relation to mesodermal and ectodermal differentiations and indicate that SMARCD1 is important for ESC differentiation, either directly or indirectly.

SMARCD1 Is Involved in Gene Regulation and Ectodermal Differentiation

Since SMARCD1 KD significantly affected gene expression, the next step in our inquiry was to identify its genomic targets. To this end, we performed chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) using SMARCD1-specific antibodies in both undifferentiated and RA-induced differentiated (4 days) ESCs. We found that SMARCD1 binding was significantly enriched in genic regions, where it predominately bound exonic and intronic regions and, to a somewhat lesser extent, 3’ UTRs and promoter regions (Figure 5A). SMARCD1 was found to bind 2,112 genes in undifferentiated...
Figure 4. Impaired Differentiation in SMARCD1-Knockdown Clones

(A) Quantification of the number of beating foci in SMARCD1-KD clones (1a and 1b) and controls (S2) after 10 days of cardiomyocyte differentiation. Shown are mean values of three independent experiments ± SEM. Changes are significant (p < 0.01; two-tailed Student’s t test).

(B) qPCR analysis of cardiomyocyte markers ALCAM, TNNT2, and NPPA in SMARCD1-KD clones and controls. The graph represents average gene expression levels ± SEM normalized to the expression levels of GAPDH from three independent experiments. Changes are significant (p < 0.0002, two-tailed Student’s t test).

(C) NPC formation in SMARCD1-KD clones (1a and 1b) and controls (S2). Scale bar, 200 μm.
cells and 2,406 genes in differentiated cells (Table S5). Comparing these two groups, we found that ~30% of the genes are bound by SMARCD1 both before and after 4 days of differentiation (Figure 6B; p < 10⁻⁹, Fisher's exact test). GO analysis revealed that SMARCD1 binds genes that belong to two main "biological processes": "regulation" and "development." Interestingly, these two GO categories were dominant both before and after differentiation (Figures S6A and S6B), despite the fact that only ~30% of the genes are shared. Further examination of the three groups (genes specific to ESCs, shared genes, and genes specific to RA) using GO analysis revealed that the shared genes and genes specific to RA belong to the same biological processes: regulation and development. The main category of the ESCs specific genes was "cell cycle." Interestingly, regulation and development were also found to be the main categories that characterize the genes with altered expression in differentiating KD cells when compared with differentially treated control cells (Figure S5A). Taken together, this strongly suggests a direct role for SMARCD1 in the regulation of genes involved in these two biological processes.

Peak distribution of SMARCD1 around the TSS (~5 kb) showed that SMARCD1 binds the promoter region, is depleted in the TSS, and binds again in the gene body with an even stronger signal (Figure 6C). This pattern is common to both pluripotent and RA-induced differentiating cells, although RA-treated cells show a more pronounced enrichment in gene bodies (Figure 6C, red). Interestingly, the distribution pattern of SMARCD1 around the TSS resembles that of H3K27me3 (Figure 7E). To further analyze the correlation between the binding pattern of SMARCD1 at genes and its effect on gene expression, we analyzed changes in gene expression in respect to SMARCD1 binding. We found that SMARCD1 was significantly enriched in genes that were downregulated upon KD: 81 out of 511 and 196 out of 1,125 genes were bound by SMARCD1 in ESCs and in RA-induced cells, respectively (p = 0.00015 in ESC and p < 10⁻⁹ in RA, Fisher's exact test). In the upregulated genes (upon SMARCD1 KD), significance levels were marginal, with 36 out of 236 genes in ESCs (p = 0.017, Fisher's exact test) and 149 out of 1,084 in RA-treated samples (p = 0.046, Fisher's exact test). These data suggest that SMARCD1 is required for the induction of a core set of genes.

Because of the perturbed differentiation phenotype, we next analyzed the binding pattern of SMARCD1 to well-established 42 genes related to development and differentiation of the three germ layers (Table S2). While in endoderm and mesoderm no significant enrichment or correlation was found, we detected a significant enrichment of SMARCD1 binding in ectodermal genes after RA differentiation (Table S2). 5 of the 15 genes that were tested were bound by SMARCD1 (p = 0.02, Fisher's exact test), and remarkably, the expression level of all of these bound genes was reduced when SMARCD1 was knocked down (Table S2). Taken together, these results imply a direct positive regulation of ectodermal genes by SMARCD1 during RA-induced differentiation.

SMARCD1 Co-localizes with Pluripotency Master Regulators and p53

We next wished to correlate the binding profile of SMARCD1 with pluripotency factors. To this end, we analyzed previously published ChIP-seq datasets in correlation with our own. Since SMARCD1 is part of the esBAF complex, we first checked whether we could detect co-localization between SMARCD1 and BRG1, the catalytic subunit of the complex. As expected, we found a highly significant co-localization of the two proteins (p < 10⁻⁹, Fisher's exact test). In addition, we found significant co-localization of SMARCD1 with several pluripotency master regulators including OCT4, NANOG, and SOX2, but not KLF4 (p < 10⁻⁹, p = 8 × 10⁻⁵, p = 0.0068, and p = 0.0745, respectively, Fisher's exact test). Finally, we tested the potential co-association of SMARCD1 with proteins that were found to bind SMARCD1. A literature search revealed that TP53 (p53) (Oh et al., 2008) and SOX2 (Gao et al., 2012) associated directly with SMARCD1. We found that SMARCD1 co-localizes significantly with TP53 (p = 4 × 10⁻⁶, Fisher's exact test), but only with the activated, phosphorylated form of p53, p53S18. Significance levels were much more marginal for the unphosphorylated p53 (p = 0.0022, Fisher's exact test), likely due to the fact that the anti-p53 antibody recognizes both the unphosphorylated and the phosphorylated forms. Taken together, these data imply a potential role for SMARCD1 in regulating the expression of genes governed by pluripotency-related TFs and suggest that SMARCD1 associates with the active, but not the inactive, form of p53. The specific nature of this interaction remains to be defined.

SMARCD1 Is Associated with Bivalent Genes

Since many of the genes that were affected by SMARCD1 KD have a role in differentiation, and since SMARCD1 binding patterns resembled H3K27me3 binding patterns, we hypothesized that they might be marked with the "bivalent" histone modifications H3K4me3 and H3K27me3. Indeed, we detected a marked enrichment for bivalent genes bound by SMARCD1, especially in

(D) Quantification of the number of cells per 200 μm² ± SEM. Changes are significant (p < 0.007, two-tailed Student’s t test).
(E) Cell morphology in SMARCD1 clones (lower panel) compared with S2 controls (upper panel) (scale bar, 50 μm) following RA-induced differentiation.
(F) Quantification of cell length ± SEM. Changes are significant (n = 100; p < 10⁻¹⁰, two-tailed Student’s t test).
(G) WB of SMARCD1-KD clones and controls shows reduction in SMARCD1 and NESTIN levels following SMARCD1 KD. GAPDH was used for normalization (representative pictures from two independent experiments are shown).
(H) Immunostaining of RA-induced SMARCD1-KD clones (1a and 1b) and S2 controls with anti-NESTIN antibodies (red, left panel). DAPI (blue), middle panel; right, merge. Scale bar, 50 μm.
(I) Quantification of (H). Graph represents NESTIN fluorescence intensity in RA-induced SMARCD1-KD clones (1a and 1b) and S2 controls.
(J) Quantification of (H) ± SEM. Graph represents the percentage of NESTIN positive cells in the RA-induced SMARCD1-KD clones (1a, 1b) versus controls (p < 0.05, two-tailed Student’s t test). In (J), 80–150 cells were counted in each experiment.
(K) Co-immunostaining of RA-induced SMARCD1-KD clones (1a and 1b) and controls using anti-NESTIN (red) and anti-GATA4 (green) antibodies. DAPI (blue), middle panel; right, merge. Scale bar, 125 μm.
genes that were downregulated in the SMARCD1-KD cells (122 out of 511 in ESCs and 273 out of 1125 in RA-treated cells; p < 10^{-9} in both groups, Fisher’s exact test). Genes that were upregulated in the KD cells showed a more modest enrichment (44 out of 236 in ESCs and 173 out of 1084 in RA-treated cells; p = 0.017 and p = 0.011, respectively, Fisher’s exact test). These results called for studying the genome-wide patterns of H3K4me3 and H3K27me3 in SMARCD1-KD clones.

SMARCD1 Regulates H3K4me3 and H3K27me3 Distribution

We next performed ChIP-seq for H3K4me3 and H3K27me3 in SMARCD1-KD and control cells. Analyzing H3K4me3/H3K27me3 global distributions showed that both modifications exhibited altered levels in the SMARCD1-KD cells, both before and after RA-induced differentiation. 13,024 genes were marked with H3K4me3 in both control and KD cells, 1,004 genes were marked with H3K4me3 in control cells only, and 2,224 genes were marked with H3K4me3 in KD cells only (Figure 7A). Hence, the number of genes marked with H3K4me3 was slightly elevated in the KD cells. After differentiation, the number of genes marked with H3K4me3 in KD cells was considerably elevated. 13,676 genes were marked with H3K4me3, 46 genes were marked with H3K4me3 in control cells only, and 2,952 genes were marked with H3K4me3 in KD cells (Figure 7A). Western blot analysis showed no discernible change in the global levels of H3K4me3 in the KD cells compared to the control cells both before and after differentiation (Figure S7A).
Interestingly, unlike H3K4me3, which showed the same trend in pluripotent and differentiating ESCs, the number of genes marked with H3K27me3 exhibited an opposite trend; in undifferentiated ESCs, 3,304 genes were marked with H3K27me3 in both control and KD cells, 239 genes were marked with H3K27me3 in control cells only, and 2,413 genes were marked with H3K27me3 in KD cells only. Hence, the number of genes marked with H3K27me3 was considerably elevated in the KD cells. Upon differentiation, the number of genes marked with H3K27me3 in the KD cells was dramatically reduced by 78%; 582 genes were marked with H3K27me3 in both groups, 2,826 genes were marked with H3K27me3 in control cells only, and 155 genes were marked with H3K27me3 in KD cells only (Figure 7B). Surprisingly, quantification of H3K27me3 levels by western blotting of isolated chromatin fractions in SMARCD1-KD versus control cells showed a slight increase in H3K27me3 level in the SMARCD1-KD cells, both in undifferentiated and in differentiated cells (Figure S7B), suggesting that it is not the total H3K27me3 chromatin bound fraction that was altered upon SMARCD1-KD but rather its distribution, with a selective decrease in genic regions.

We therefore tested the levels of H3K4me3 and H3K27me3 around genic regions, ±5 kb from the TSS. In ESCs, the characteristic H3K4me3 distribution around the TSS was overall preserved in SMARCD1-KD cells, albeit with a small elevation just before the TSS (Figure 7C). This elevation was more pronounced in RA-induced differentiating SMARCD1-KD cells (Figure 7D). The opposite phenomenon was observed for H3K27me3 patterns: a slight reduction in H3K27me3 around the TSS was observed in undifferentiated SMARCD1-KD ESCs (Figure 7E), which was almost completely abolished in RA-treated cells (Figure 7F).

SMARCD1 Binding Is Associated with Gene Induction during Differentiation

To ask whether up- or downregulated genes upon SMARCD1 KD are differentially marked by H3K4me3 and H3K27me3 levels, we compared H3K4me3 and H3K27me3 ChIP-seq data with the SMARCD1-KD gene expression data. The read density spanning ±5 kb of TSSs of 19,885 genes from the RefSeq database was compared with genes that were sorted according to the expression array: from genes that were highly expressed in the KD clones to genes that were highly expressed in the control cells. A general elevation of both H3K4me3 and H3K27me3 at genic regions can be seen in undifferentiated SMARCD1-KD ESCs, regardless of the expression level of the bound genes (Figure 7G). However, within the over 500 downregulated genes, the ~25% most significantly downregulated displayed markedly reduced H3K4me3 levels (Figure 7G, bottom left), potentially explaining their downregulation. Also, in this group of genes, the elevation of H3K27me3 was most pronounced (Figure 7G, bottom right). In the RA-differentiated cells, H3K4me3 levels were elevated across the upregulated genes and unaltered across the downregulated genes in the SMARCD1-KD clones (Figure 7H, left). In stark contrast, H3K27me3 levels were dramatically decreased in the SMARCD1-KD cells across all the genes regardless of their expression level (Figure 7H, right), although this decrease was most significant in the upregulated genes. Taken together, these data suggest that SMARCD1 regulates gene expression in a direct and indirect manner.

SMARCD1 Regulates KLF4 in a Direct and Indirect Manner

As noted earlier, a key TF that had higher expression levels in both ESCs and RA-treated cells following SMARCD1 KD is KLF4 (Figures 5D and 5F). To test whether the expression of KLF4 can be explained by H3K4me3/H3K27me3 levels, we examined both these marks around KLF4’s TSS and in the gene body itself (Figure 7I). In the undifferentiated state, H3K4me3 levels were higher in the KD cells compared with the control cells, while H3K27me3 levels were low in both KD and control cells. This may explain the high levels of KLF4 in both KD clones 1a and 1b (~4.8- and ~3.5-fold, respectively) (Figure 5F). Following RA-induced differentiation, H3K4me3, but not H3K27me3, showed a similar trend to the one observed in the ESC state. H3K4me3 levels were higher in the KD clones compared to the control cells and H3K27me3 was almost abolished in the KD clones, again probably explaining the high levels of KLF4 in both KD clones (~7- and ~9.7-fold, respectively) (Figure 5F). In addition, SMARCD1 was found to be associated with KLF4’s promoter, 4 kb upstream of the TSS, in undifferentiated, but not differentiated, ESCs (Figure 7I, red box), suggesting a direct association of SMARCD1 with the KLF4 gene. To test if
Figure 7. SMARCD1 Controls H3K4me3 and H3K27me3 Distribution around TSSs

(A) The number of genes enriched with H3K4me3 in ESCs and in RA-induced cells. Shared genes are labeled with dark gray.

(B) The number of genes enriched with H3K27me3 in ESCs and in RA-induced cells. Shared genes are labeled with dark gray. Note the reduction in the number of H3K27me3 marked genes in the RA-induced KD cells.

(C and D) Composite plot of normalized H3K4me3 peaks ±5 kb around the TSS in KD (purple) and S2 control (green) ESC (C) and RA-induced (D) clones. (E and F) Same as (C) and (D) for H3K27me3.

(G) Read densities of H3K4me3 and H3K27me3 in ESC in a window of 10 kb around the TSSs of 19,885 RefSeq genes. Genes were sorted from highly expressed in the KD clones to highly expressed in control cells based on the expression arrays.

(H) Same as (G) for RA-differentiated clones.

(I) H3K4me3, H3K27me3, and SMARCD1 read density around Klf4’s promoter, TSS, and gene body in ESCs (top) and RA-induced cells (RA) (bottom). Red box denotes a MACS peak of SMARCD1 in undifferentiated ESCs 4 kb upstream of Klf4’s promoter. The Klf4 gene (bottom) is shown in blue, from right to left.
depletion of SMARCD1 results in clearance of the Klf4 promoter
from other esBAF components, we performed ChIP-qPCR for
BRG1 and found a slight but consistent enrichment (2-fold) on
the Klf4 promoter (Figure S7C). The Oct4 promoter showed no
such enrichment (Figure S7C). Taken together, these data
suggest that SMARCD1 acts to silence KLF4 by regulating the
levels of H3K27me3 at the Klf4 promoter. Its co-expression
with the endodermal marker FOXA2 in the RA-differentiated
SMARCD1-KD cells, as well as a recent report that suggested
its role in early endodermal differentiation (Cao et al., 2012),
may explain the preferred endodermal over ectodermal differen-
tiation observed in the SMARCD1-KD cells.

DISCUSSION

In this study, we present a useful biochemical assay, D-CAP, for
the identification of proteins that are differentially bound to chro-
matin between two cell types. We employed this assay to char-
acterize and compare the differential association of proteins to
chromatin in pluripotent ESCs and differentiating NPCs. Many
of the proteins that we found to be associated with chromatin in
ESCs are known to have an ESC-related role, e.g., HDAC1
(Dovey et al., 2010; Jurkin et al., 2011; Kidder and Palmer,
2012); DDX18, SNRPD2, and SMC1a (Fazzio et al., 2008); and
SMARCC1 (Fazzio et al., 2008; Ho et al., 2009b; Schaniel
et al., 2009). These published works, combined with our
D-CAP results, suggest that chromatin-associated proteins
have a functional role in ESC biology. D-CAP can be employed
in ESCs to study various differentiation pathways but can also
be harnessed to compare essentially any two or more cell types,
including during development, in disease states, and following
various treatments.

Unlike proteome analysis of whole-extract samples from
nuclei of ESCs and differentiated cells (Barthélémy et al., 2009;
Kurisaki et al., 2005; Lu et al., 2009), D-CAP enables one to
distinguish between proteins that are expressed roughly at
similar levels but display differential association to chromatin,
as we observed for SMARCC1 and SMARCD1. Although their
protein levels in ESCs and NPCs remained unaltered, the asso-
ciation of these proteins with chromatin changed, possibly sug-
gesting a different role for these as well as other proteins in ESCs
and during differentiation. This was further verified by ChiP-seq,
where only 30% of the genes (650/2,112) bound by SMARCD1
were common to both ESCs and RA-induced differentiating
cells.

In contrast to other subunits of the esBAF complex (Gaspar-
Maia et al., 2011; Ho et al., 2009b), in our hands, depletion of
SMARCD1 had a limited effect on the pluripotent state of ESCs
using both knockout and KD approaches. A recent study
showed that in D3 ESCs, SMARCD1 KD led to spontaneous dif-
ferratation (Gao et al., 2012). This could be explained by
different SMARCD1 levels achieved in different clones, lead-
ing to different esBAF subunit stoichiometry. Regardless,
SMARCD1 KD in differentiating cells resulted in a much more
prominent phenotype including aberrant differentiation and
increased levels of pluripotency markers. Although complete
KO of SMARCD1 did not affect undifferentiated ESCs, it resulted
in extensive cell death when the cells were induced to differen-
tiate. This suggests that SMARCD1 may act as a regulator of
the pluripotency network, shutting down key components during
the early stages of differentiation to enable differentiation to pro-
ceed. The only major difference observed in the undifferentiated
state due to SMARCD1 KD was a more open chromatin confor-
mation: HP1α distribution was affected, H3 acetylation levels
were higher and, FRAP analysis revealed higher mobility of H1,
which coincides with higher histone acetylation levels and a
more relaxed chromatin state (Melcer et al., 2012). Increased his-
tone acetylation and chromatin plasticity in ESCs was previously
shown to have limited effect on the undifferentiated state (Bou-
dadi et al., 2013; Hezroni et al., 2011b), in agreement with our
current results.

While induction of NPCs and cardiomyocytes from
SMARCD1-KD clones led to impaired differentiation, RA, which
is a less selective differentiation agent, led to the generation of
two distinct cell populations, each expressing a different lineage
marker (NES or GATA4). This indicates that under these condi-
tions, SMARCD1 KD led to a shift from ectodermal to endo-
dermal differentiation. Our gene expression data, which showed
upregulation of endodermal genes and downregulation of
ectodermal genes in the RA-induced KD cells, strengthened
this conclusion. It would be interesting to check whether
SMARCD1-KD ESCs can differentiate more easily into endo-
derm and perhaps become a better source for endodermal dif-
ferentiation, as our data suggest.

Our combined ChiP-seq and expression analyses suggest
that SMARCD1 may regulate gene expression both directly
and indirectly, likely through interactions with different TFs and
transcriptional regulator complexes. Our ChiP-seq results sug-
gest that TP53 (p53) is one of these SMARCD1 partners.
SMARCD1 and p53 show a significantly high degree of co-local-
ization, and p53 itself interacts with the SWI/SNF complex via
SMARCD1 (Ch et al., 2008). In ESCs, p53 is important for
the repression of key transcriptional regulators such as OCT4,
NANOG, and SOX2 (Li et al., 2012). As indicated above,
SMARCD1 is probably required to enable the repression of these
TFs during early differentiation. In the absence of SMARCD1, the
pluripotency factors escape repression, their expression re-
mains high, and differentiation is severely inhibited.

Interestingly, SMARCD1 KD in ESCs had an opposite effect to
a KD of another chromatin remodeler, CHD1, we previously
studied (Gaspar-Maia et al., 2009). In both cases, the KD did
not affect pluripotent marker expression in the undifferentiated
state, but in contrast to SMARCD1, the CHD1-KD cells accumu-
lated high levels of heterochromatin and differentiated preco-
ciously, suggesting that CHD1 acts to keep chromatin open,
while SMARCD1 acts to keep chromatin closed. Regardless,
both chromatin remodelers are important to establish the correct
balance between euchromatin and heterochromatin in ESCs,
which is likely critical for the maintenance of pluripotency.

How does SMARCD1 exert its effect on ESCs? Our combined
ChiP-seq and gene expression studies suggest a two-level
mechanism: first, by directly regulating the pluripotency-related
factor KLF4, which is one of the four “Yamanaka factors” used
for reprogramming somatic cells into induced pluripotent stem
cells (iPSCs); and second, by a more global influence on chro-
matin structure by regulating the levels of histone modifications,
mostly of H3K27me3, which is required to silence developmental genes in ESCs, as well as pluripotency genes in differentiating cells (Bernstein et al., 2006; Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al., 2007). This dual action is likely also mediated by other members of the esBAF complex of which SMARCD1 is a member. Depletion of SMARCD1 likely results in altered stoichiometry of the different subunits in the complex, potentially leading to its aberrant functioning. This is supported by more recent observations showing that depletion of the catalytic subunit of the esBAF complex, BRG1, also causes global changes in PRC2 and H3K27me3 (Ho et al., 2011).

To summarize, in this study, we present a method to identify chromatin-associated proteins that are enriched in one cell population over the other, and we employed it to identify differentially bound chromatin proteins between undifferentiated and partially differentiated ESCs. Using this method, which we named D-CAP, we identified the chromatin remodeling protein SMARCD1, which displayed more significant association with chromatin in ESCs compared to differentiated cells. Our functional studies suggest an important role for SMARCD1 in early differentiation events and for maintaining the balance between euchromatin and heterochromatin. In conclusion, our results demonstrate the role of SMARCD1 in restricting the pluripotency network and activating various differentiation pathways.

EXPERIMENTAL PROCEDURES

Cell Culture

Mouse R1 ESCs were cultured as described before (Melcer et al., 2012). Differentiation procedures are described in Supplemental Experimental Procedures.

Micrococcal Nuclease Digestion

Fresh nuclei from ESCs or NPCs were washed (four times), resuspended in MNase digestion buffer (10 mM Tris-HCl [pH 8], 5 mM CaCl2, 150 mM KCl, 0.1 mM PMSF, and protease inhibitor cocktail 1:100 [Sigma]), rotated (4°C, 30 min), and centrifuged (500 g, 4°C, 5 min). Nuclei were then subjected to different MNase concentrations (0/1.5/3/4.5/1,000 U/ml MNase [Worthington]) in MNase digestion buffer. Reactions were stopped by adding 10X MNase Stop Buffer (100 mM Tris-HCl [pH 7.5], 100 mM EDTA, and 10 mM EGTA) followed by centrifugation (13,000 × g, 4°C, 10 min). Supernatants were collected and subjected to LC-MS/MS analyses. To verify the MNase digestion, DNA was purified from the pellets and electrophoresed.

Gene Expression Analysis

Total RNA was extracted and subjected to GeneChip Mouse Gene 1.0ST Arrays (Affymetrix). Data were normalized with the robust multivariate average method using the Affymetrix Expression Console (version 1.1). See also Supplemental Experimental Procedures.

ChIP

ChIP was performed as described previously (Sailaja et al., 2012). Antibodies used included BRG1 (ab110641, Abcam), H3K4me3 (ab8580, Abcam), H3K27me3 (07-449, Millipore), and SMARCD1 (611728, BD). ChIP-seq was done as described previously (Hezroni et al., 2011a) using the SOLiD4 sequencer (ABI).

Mass Spectrometry of Proteins

Proteins were reduced, alkylated, and trypsinized as described previously (Dutta et al., 2012; Sanders et al., 2002). The peptides were subjected to reverse-phase microcapillary electrospray ionization LC-MS/MS. See also Supplemental Experimental Procedures.

ACCESSION NUMBERS

The GEO accession number for the expression data reported in this paper is GSE65089. SOLID ChIP-seq data can be downloaded directly from the following website: http://meshorerlab.huji.ac.il/downloads.html.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.02.064.

AUTHOR CONTRIBUTIONS

A.A. designed and carried out all experiments following consultations with E.M.; A.B. performed ChIP-seq experiments and analyzed all ChIP-seq data; A.H. generated and validated the CRISPR-KO clones; B.S. performed ChIP experiments; Y.A. and I.L. helped with statistics and data analysis; M.N. helped with ChIP and IF experiments; A.G.S. and G.M. performed endodermal differentiation; and V.R.G., D.E.G., A.D., and S.K.S. performed LC-MS/MS experiments. A.A. and E.M. wrote the manuscript, and A.A., E.M., I.L., and A.B. discussed the results and commented on the manuscript.

ACKNOWLEDGMENTS

We thank Amichay Afriat and Tal Cohen for help with experiments, Shai Melcer for helpful discussions, and Abed A. Mansour and Jacob Hanna for kindly providing reagents. Microarray hybridization and high-throughput sequencing was carried out at The Center for Genomic Technologies, Institute of Life Sciences, The Hebrew University. This work was supported by the Israel Science Foundation (ISF 1252/12 and 657/12 to E.M.); the Israel Ministry of Science (E.M.), and the European Research Council (ERC-281781 to E.M.). A.B. is a Clore Fellow.

Received: July 21, 2014
Revised: January 9, 2015
Accepted: February 25, 2015
Published: March 26, 2015

REFERENCES

